FSH blockade improves cognition in mice with Alzheimer’s disease

  • Sowers, M. et al. Changes in body composition in women over six years at midlife: ovarian and chronological aging. J. Clin. Endocrinol. Metab. 92, 895–901 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Sowers, M. R. et al. Hormone predictors of bone mineral density changes during the menopausal transition. J. Clin. Endocrinol. Metab. 91, 1261–1267 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Guo, Y. et al. Blocking FSH inhibits hepatic cholesterol biosynthesis and reduces serum cholesterol. Cell Res. 29, 151–166 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Han, X. et al. A novel follicle-stimulating hormone vaccine for controlling fat accumulation. Theriogenology 148, 103–111 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Ji, Y. et al. Epitope-specific monoclonal antibodies to FSHβ increase bone mass. Proc. Natl Acad. Sci. USA 115, 2192–2197 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, P. et al. Blocking FSH induces thermogenic adipose tissue and reduces body fat. Nature 546, 107–112 (2017).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Geng, W. et al. Immunization with FSHβ fusion protein antigen prevents bone loss in a rat ovariectomy-induced osteoporosis model. Biochem. Biophys. Res. Commun. 434, 280–286 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Fisher, D. W., Bennett, D. A. & Dong, H. Sexual dimorphism in predisposition to Alzheimer’s disease. Neurobiol. Aging 70, 308–324 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andersen, K. et al. Gender differences in the incidence of AD and vascular dementia: the EURODEM studies. EURODEM Incidence Research Group. Neurology 53, 1992–1997 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Marongiu, R. Accelerated ovarian failure as a unique model to study peri-menopause influence on Alzheimer’s disease. Front. Aging Neurosci. 11, 242 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Matyi, J. M., Rattinger, G. B., Schwartz, S., Buhusi, M. & Tschanz, J. T. Lifetime estrogen exposure and cognition in late life: the Cache County study. Menopause 26, 1366–1374 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zandi, P. P. et al. Hormone replacement therapy and incidence of Alzheimer disease in older women: the Cache County Study. JAMA 288, 2123–2129 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • O’Brien, J., Jackson, J. W., Grodstein, F., Blacker, D. & Weuve, J. Postmenopausal hormone therapy is not associated with risk of all-cause dementia and Alzheimer’s disease. Epidemiol. Rev. 36, 83–103 (2014).

    PubMed 

    Google Scholar 

  • Shumaker, S. A. et al. Conjugated equine estrogens and incidence of probable dementia and mild cognitive impairment in postmenopausal women: Women’s Health Initiative Memory Study. JAMA 291, 2947–2958 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Short, R. A., Bowen, R. L., O’Brien, P. C. & Graff-Radford, N. R. Elevated gonadotropin levels in patients with Alzheimer disease. Mayo Clin. Proc. 76, 906–909 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Bowen, R. L., Isley, J. P. & Atkinson, R. L. An association of elevated serum gonadotropin concentrations and Alzheimer disease? J. Neuroendocrinol. 12, 351–354 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Randolph, J. F. Jr et al. Change in follicle-stimulating hormone and estradiol across the menopausal transition: effect of age at the final menstrual period. J. Clin. Endocrinol. Metab. 96, 746–754 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Epperson, C. N., Sammel, M. D. & Freeman, E. W. Menopause effects on verbal memory: findings from a longitudinal community cohort. J. Clin. Endocrinol. Metab. 98, 3829–3838 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Greendale, G. A. et al. Effects of the menopause transition and hormone use on cognitive performance in midlife women. Neurology 72, 1850–1857 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meyer, P. M. et al. A population-based longitudinal study of cognitive functioning in the menopausal transition. Neurology 61, 801–806 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Zhu, L. L. et al. Blocking antibody to the β-subunit of FSH prevents bone loss by inhibiting bone resorption and stimulating bone synthesis. Proc. Natl Acad. Sci. USA 109, 14574–14579 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Oddo, S. et al. Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 39, 409–421 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Webster, S. J., Bachstetter, A. D., Nelson, P. T., Schmitt, F. A. & Van Eldik, L. J. Using mice to model Alzheimer’s dementia: an overview of the clinical disease and the preclinical behavioral changes in 10 mouse models. Front. Genet. 5, 88 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Carroll, J. C. et al. Progesterone and estrogen regulate Alzheimer-like neuropathology in female 3xTg-AD mice. J. Neurosci. 27, 13357–13365 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Z. et al. Cleavage of tau by asparagine endopeptidase mediates the neurofibrillary pathology in Alzheimer’s disease. Nat. Med. 20, 1254–1262 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Z. et al. Delta-secretase cleaves amyloid precursor protein and regulates the pathogenesis in Alzheimer’s disease. Nat. Commun. 6, 8762 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Rocca, W. A. et al. Increased risk of cognitive impairment or dementia in women who underwent oophorectomy before menopause. Neurology 69, 1074–1083 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Tokuyama, N. et al. Individual and combining effects of anti-RANKL monoclonal antibody and teriparatide in ovariectomized mice. Bone Rep. 2, 1–7 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Rosen, C. J. & Zaidi, M. Contemporaneous reproduction of preclinical science: a case study of FSH and fat. Ann. N. Y. Acad. Sci. 1404, 17–19 (2017).

    ADS 
    PubMed 

    Google Scholar 

  • Minkeviciene, R. et al. Age-related decrease in stimulated glutamate release and vesicular glutamate transporters in APP/PS1 transgenic and wild-type mice. J. Neurochem. 105, 584–594 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Onos, K. D. et al. Enhancing face validity of mouse models of Alzheimer’s disease with natural genetic variation. PLoS Genet. 15, e1008155 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Volianskis, A., Kostner, R., Molgaard, M., Hass, S. & Jensen, M. S. Episodic memory deficits are not related to altered glutamatergic synaptic transmission and plasticity in the CA1 hippocampus of the APPswe/PS1deltaE9-deleted transgenic mice model of ss-amyloidosis. Neurobiol. Aging 31, 1173–1187 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Araujo, A. B. & Wittert, G. A. Endocrinology of the aging male. Best Pract. Res. Clin. Endocrinol. Metab. 25, 303–319 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Casadesus, G. et al. Increases in luteinizing hormone are associated with declines in cognitive performance. Mol. Cell. Endocrinol. 269, 107–111 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Berry, A., Tomidokoro, Y., Ghiso, J. & Thornton, J. Human chorionic gonadotropin (a luteinizing hormone homologue) decreases spatial memory and increases brain amyloid-β levels in female rats. Horm. Behav. 54, 143–152 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, T., Wimalasena, J., Bowen, R. L. & Atwood, C. S. Luteinizing hormone receptor mediates neuronal pregnenolone production via up-regulation of steroidogenic acute regulatory protein expression. J. Neurochem. 100, 1329–1339 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Gera, S. et al. First-in-class humanized FSH blocking antibody targets bone and fat. Proc. Natl Acad. Sci. USA 117, 28971–28979 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Straccia, M. et al. Pro-inflammatory gene expression and neurotoxic effects of activated microglia are attenuated by absence of CCAAT/enhancer binding protein β. J. Neuroinflammation 8, 156 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ramji, D. P. & Foka, P. CCAAT/enhancer-binding proteins: structure, function and regulation. Biochem. J. 365, 561–575 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, Z. H. et al. Delta-secretase phosphorylation by SRPK2 enhances its enzymatic activity, provoking pathogenesis in Alzheimer’s disease. Mol. Cell 67, 812–825 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, L. et al. FSH directly regulates bone mass. Cell 125, 247–260 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Hammond, S. L., Leek, A. N., Richman, E. H. & Tjalkens, R. B. Cellular selectivity of AAV serotypes for gene delivery in neurons and astrocytes by neonatal intracerebroventricular injection. PLoS ONE 12, e0188830 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • von Jonquieres, G. et al. Recombinant human myelin-associated glycoprotein promoter drives selective AAV-mediated transgene expression in oligodendrocytes. Front. Mol. Neurosci. 9, 13 (2016).

    Google Scholar 

  • Randolph, J. F. Jr. et al. Reproductive hormones in the early menopausal transition: relationship to ethnicity, body size, and menopausal status. J. Clin. Endocrinol. Metab. 88, 1516–1522 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Ashe, K. H. & Zahs, K. R. Probing the biology of Alzheimer’s disease in mice. Neuron 66, 631–645 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Millward, C. A. et al. Mice with a deletion in the gene for CCAAT/enhancer-binding protein β are protected against diet-induced obesity. Diabetes 56, 161–167 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zaidi, M. et al. Actions of pituitary hormones beyond traditional targets. J. Endocrinol. 237, R83–R98 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Silverman, E., Eimerl, S. & Orly, J. CCAAT enhancer-binding protein β and GATA-4 binding regions within the promoter of the steroidogenic acute regulatory protein (StAR) gene are required for transcription in rat ovarian cells. J. Biol. Chem. 274, 17987–17996 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Sirois, J. & Richards, J. S. Transcriptional regulation of the rat prostaglandin endoperoxide synthase 2 gene in granulosa cells. Evidence for the role of a cis-acting C/EBPβ promoter element. J. Biol. Chem. 268, 21931–21938 (1993).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, H., Liu, X., Chen, S. & Ye, K. Spatiotemporal activation of the C/EBPβ/δ-secretase axis regulates the pathogenesis of Alzheimer’s disease. Proc. Natl Acad. Sci. USA 115, E12427–E12434 (2018).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sterneck, E., Tessarollo, L. & Johnson, P. F. An essential role for C/EBPβ in female reproduction. Genes Dev. 11, 2153–2162 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Minkeviciene, R. et al. Amyloid β-induced neuronal hyperexcitability triggers progressive epilepsy. J. Neurosci. 29, 3453–3462 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, Z. et al. 7,8-dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology 39, 638–650 (2014).

    PubMed 

    Google Scholar 

  • Xiang, J. et al. Delta-secretase-cleaved Tau antagonizes TrkB neurotrophic signalings, mediating Alzheimer’s disease pathologies. Proc. Natl Acad. Sci. USA 116, 9094–9102 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leger, M. et al. Object recognition test in mice. Nat. Protoc. 8, 2531–2537 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Ioannidis, J. P. Why most published research findings are false. PLoS Med. 2, e124 (2005).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Collins, F. S. & Tabak, L. A. Policy: NIH plans to enhance reproducibility. Nature 505, 612–613 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McNutt, M. Reproducibility. Science 343, 229 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Mullard, A. Cancer reproducibility project yields first results. Nat. Rev. Drug Discov. 16, 77 (2017).

    PubMed 

    Google Scholar 

  • Horrigan, S. K. et al. Replication study: melanoma genome sequencing reveals frequent PREX2 mutations. eLife 6, e21634 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Horrigan, S. K., Reproducibility Project: Cancer Biology. Replication study: the CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. eLife 6, e18173 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Read original article here

    Leave a Comment