Targeting Xist with compounds that disrupt RNA structure and X inactivation

  • Consortium, E. P. et al. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).

    Article 
    ADS 

    Google Scholar 

  • Santos, R. et al. A comprehensive map of molecular drug targets. Nat. Rev. Drug Discov. 16, 19–34 (2017).

    CAS 
    Article 

    Google Scholar 

  • Warner, K. D. et al. Principles for targeting RNA with drug-like small molecules. Nat. Rev. Drug Discov. 17, 547–558 (2018).

    CAS 
    Article 

    Google Scholar 

  • Zhang, F. & Lupski, J. R. Non-coding genetic variants in human disease. Hum. Mol. Genet. 24, R102–R110 (2015).

    CAS 
    Article 

    Google Scholar 

  • Lee, J. T. Epigenetic regulation by long noncoding RNAs. Science 338, 1435–1439 (2012).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • Wutz, A. et al. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet. 30, 167–174 (2002).

    CAS 
    Article 

    Google Scholar 

  • Rizvi, N. F. & Smith, G. F. RNA as a small molecule druggable target. Bioorg. Med. Chem. Lett. 27, 5083–5088 (2017).

    CAS 
    Article 

    Google Scholar 

  • Disney, M. D. et al. Drugging the RNA world. Cold Spring Harb. Perspect. Biol. 10, a034769 (2018).

    CAS 
    Article 

    Google Scholar 

  • Howe, J. A. et al. Selective small-molecule inhibition of an RNA structural element. Nature 526, 672–677 (2015).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • Palacino, J. et al. SMN2 splice modulators enhance U1-pre-mRNA association and rescue SMA mice. Nat. Chem. Biol. 11, 511–517 (2015).

    CAS 
    Article 

    Google Scholar 

  • Disney, M. D. et al. Inforna 2.0: a platform for the sequence-based design of small molecules targeting structured RNAs. ACS Chem. Biol. 11, 1720–1728 (2016).

    CAS 
    Article 

    Google Scholar 

  • Allen Annis, D. et al. An affinity selection-mass spectrometry method for the identification of small molecule ligands from self-encoded combinatorial libraries—Discovery of a novel antagonist of E-coli dihydrofolate reductase. Int. J. Mass Spectrom. 238, 77–83 (2004).

    Google Scholar 

  • Rizvi, N. F. et al. Discovery of selective RNA-binding small molecules by affinity-selection mass spectrometry. ACS Chem. Biol. 13, 820–831 (2018).

    CAS 
    Article 

    Google Scholar 

  • Rizvi, N. F. et al. Targeting RNA with small molecules: identification of selective, RNA-binding small molecules occupying drug-like chemical space. SLAS Discov. 25, 384–396 (2020).

  • Cifuentes-Rojas, C. et al. Regulatory interactions between RNA and polycomb repressive complex 2. Mol. Cell 55, 171–185 (2014).

    CAS 
    Article 

    Google Scholar 

  • Chillon, I. et al. Native purification and analysis of long RNAs. Methods Enzymol. 558, 3–37 (2015).

    CAS 
    Article 

    Google Scholar 

  • Lipinski, C. A. Lead- and drug-like compounds: the rule-of-five revolution. Drug Discov. Today Technol. 1, 337–341 (2004).

    CAS 
    Article 

    Google Scholar 

  • Monfort, A. et al. Identification of Spen as a crucial factor for Xist function through forward genetic screening in haploid embryonic stem cells. Cell Rep. 12, 554–561 (2015).

    CAS 
    Article 

    Google Scholar 

  • Lee, M. K. et al. A novel small-molecule binds to the influenza A virus RNA promoter and inhibits viral replication. Chem. Commun. 50, 368–370 (2014).

    CAS 
    Article 

    Google Scholar 

  • Ogawa, Y. et al. Intersection of the RNA interference and X-inactivation pathways. Science 320, 1336–1341 (2008).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • Zhao, J. et al. Genome-wide identification of polycomb-associated RNAs by RIP–seq. Mol. Cell 40, 939–953 (2010).

    CAS 
    Article 

    Google Scholar 

  • Patil, D. P. et al. m6A RNA methylation promotes XIST-mediated transcriptional repression. Nature 537, 369–373 (2016).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • Sunwoo, H. et al. Repeat E anchors Xist RNA to the inactive X chromosomal compartment through CDKN1A-interacting protein (CIZ1). Proc. Natl Acad. Sci. USA 114, 10654–10659 (2017).

    CAS 
    Article 

    Google Scholar 

  • Jeon, Y. & Lee, J. T. YY1 tethers Xist RNA to the inactive X nucleation center. Cell 146, 119–133 (2011).

    CAS 
    Article 

    Google Scholar 

  • Colognori, D. et al. Xist deletional analysis reveals an interdependency between Xist RNA and polycomb complexes for spreading along the inactive X. Mol. Cell 74, 101–117 e110 (2019).

    CAS 
    Article 

    Google Scholar 

  • Liu, F. et al. Visualizing the secondary and tertiary architectural domains of lncRNA RepA. Nat. Chem. Biol. 13, 282–289 (2017).

    Article 

    Google Scholar 

  • Kikhney, A. G. & Svergun, D. I. A practical guide to small angle X-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett. 589, 2570–2577 (2015).

    CAS 
    Article 

    Google Scholar 

  • Kim, D. N. et al. Zinc-finger protein CNBP alters the 3-D structure of lncRNA Braveheart in solution. Nat. Commun. 11, 148 (2020).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • Carrette, L. L. G. et al. A mixed modality approach towards Xi reactivation for Rett syndrome and other X-linked disorders. Proc. Natl Acad. Sci. USA 115, 1715124115 (2017).

    Google Scholar 

  • Stelzer, A. C. et al. Discovery of selective bioactive small molecules by targeting an RNA dynamic ensemble. Nat. Chem. Biol. 7, 553–559 (2011).

    CAS 
    Article 

    Google Scholar 

  • Read original article here

    Leave a Comment