Putting the Theory of Special Relativity Into Practice

The theory of relativity usually encompasses two interrelated theories by Albert Einstein: special relativity published in 1905 and general relativity published in 1915. Special relativity applies to all physical phenomena in the absence of gravity. General relativity explains the law of gravitation and its relation to other forces of nature.

The theory of relativity was developed by Albert Einstein in the early 1900s due to the inability of classical physics to explain certain observations. It has two components, special relativity and general relativity.

Special relativity is based on the key concepts of a constant speed of light and physical events must look the same to all observers and applies to all physical phenomena without significant gravitation. General relativity is the idea that space and time are two aspects of spacetime, and what we perceive as gravity is the warping of spacetime.

Scientists who study the cosmos have a favorite philosophy known as the “mediocrity principle,” which, in essence, suggests that there’s really nothing special about Earth, the Sun, or the Thousands of Galaxies Hubble Space Telescope

This image made from a composite of September 2003 – January 2004 photos captured by the NASA/ESA Hubble Space Telescope shows nearly 10,000 galaxies in the deepest visible-light image of the cosmos, cutting across billions of light-years. Credit: Image courtesy of NASA, ESA, S. Beckwith (STScI), HUDF Team

“What this research is telling us is that we have a funny motion, but that funny motion is consistent with everything we know about the universe—there’s nothing special going on here,” said Darling. “We’re not special as a galaxy or as observers.”

Roughly 35 years ago, researchers discovered the cosmic microwave background, which is electromagnetic radiation left over from the universe’s formation during the Jeremy Darling

Astrophysics professor Jeremy Darling studies galaxy evolution, massive black holes, star formation, and cosmology. Credit: University of Colorado at Boulder

Scientists can independently test this inference by counting the galaxies that are visible from Earth or adding up their brightness. They can do this thanks largely to Albert Einstein’s 1905 theory of special relativity, which explains how speed affects time and space. In this application, a person on Earth looking out into the universe in one direction—the same direction that the Sun and the Earth are moving—should see galaxies that are brighter, bluer, and more concentrated. Similarly, by looking in the other direction, the person should see galaxies that are darker, redder, and spaced farther apart.

But when investigators have tried to count galaxies in recent years—a process that’s difficult to do accurately—they’ve come up with numbers that suggest the Sun is moving much faster than previously thought, which is at odds with standard cosmology.

“It’s hard to count galaxies over the whole sky—you’re usually stuck with a hemisphere or less,” said Darling. “And, on top of that, our own galaxy gets in the way. It has dust that will cause you to find fewer galaxies and will make them look dimmer as you get closer to our galaxy.”

Darling was intrigued and perplexed by this cosmological puzzle, so he decided to investigate for himself. He also knew there were two recently released surveys that could help improve the

“I love the idea that this basic principle that Einstein told us about a long time ago is something you can see. It’s a really esoteric thing that seems super weird, but if you go out and count galaxies, you could see this neat effect. It’s not quite as esoteric or weird as you might think.” — Jeremy Darling

Together, these surveys allowed Darling to study the entire sky by patching together views from the northern and southern hemispheres. Importantly, the new surveys also used radio waves, which made it easier to “see” through the dust of the Milky Way, thus improving the view of the universe.

When Darling analyzed the surveys, he found that the number of galaxies and their brightness was in perfect agreement with the velocity researchers had previously inferred from the cosmic microwave background.

“We find a bright direction and a dim direction—we find a direction where there are more galaxies and a direction where there are fewer galaxies,” he said. “The big difference is that it lines up with the early universe from the cosmic microwave background and it has the right speed. Our cosmology is just fine.”

Because Darling’s findings differ from past results, his paper will likely prompt various follow-up studies to confirm or dispute his results.

But in addition to pushing the field of cosmology forward, the findings are a good real-world example of Einstein’s special relativity theory—and they demonstrate how researchers are still putting the theory into practice, more than 100 years after the famed physicist first proposed it.

“I love the idea that this basic principle that Einstein told us about a long time ago is something you can see,” Darling said. “It’s a really esoteric thing that seems super weird, but if you go out and count galaxies, you could see this neat effect. It’s not quite as esoteric or weird as you might think.”

Reference: “The Universe is Brighter in the Direction of Our Motion: Galaxy Counts and Fluxes are Consistent with the CMB Dipole” by Jeremy Darling, 26 May 2022, Astrophysical Journal Letters.
DOI: 10.3847/2041-8213/ac6f08



Read original article here

Leave a Comment