NASA State-of-the-Art Asteroid Tracking System Now Capable of Full Sky Search

The NASA Asteroid Tracking System

From left to right: Sutherland ATLAS station during construction in South Africa. Credit: Willie Koorts (SAAO); Chilean engineers and astronomers installing the ATLAS telescope at El Sauce Observatory. Credit: University of Hawaii; Illustration of NASA’s DART spacecraft and the Italian Space Agency’s (ASI) LICIACube prior to impact at the Didymos binary system. Credit: NASA/Johns Hopkins, APL/Steve Gribben; Illustration of the NEO Surveyor spacecraft

“An important part of planetary defense is finding asteroids before they find us, so if necessary, we can get them before they get us” said Kelly Fast, Near-Earth Object Observations Program Manager for NASA’s Planetary Defense Coordination Office. “With the addition of these two telescopes, ATLAS is now capable of searching the entire dark sky every 24 hours, making it an important asset for NASA’s continuous effort to find, track, and monitor NEOs.”

UH IfA developed the first two ATLAS telescopes in Hawai‘i under a 2013 grant from NASA’s Near-Earth Objects Observations Program, now part of NASA’s PDCO, and the two facilities on Haleakala and Maunaloa, respectively, became fully operational in 2017. After several years of successful operation in Hawai‘i, IfA competed for additional NASA funds to build two more telescopes in the southern hemisphere. IfA sought partners to host these telescopes, and selected the South African Astronomical Observatory (SAAO) in South Africa and a multi-institutional collaboration in Chile. The ATLAS presence augments already substantial astronomical capability in both countries.

Each of the four ATLAS telescopes can image a swath of sky 100 times larger than the full moon in a single exposure. The completion of the two final telescopes, which are located at Sutherland Observing Station in South Africa and El Sauce Observatory in Chile, enable ATLAS to observe the night sky when it is daytime in Hawai‘i.

To date, the ATLAS system has discovered more than 700 near-Earth asteroids and 66 comets, along with detection of 2019 MO and 2018 LA, two very small asteroids that actually impacted Earth. The system is specially designed to detect objects that approach very close to Earth – closer than the distance to the Moon, about 240,000 miles or 384,000 kilometers away. On January 22, ATLAS-Sutherland in South Africa discovered its first NEO, 2022 BK, a 100-meter asteroid that poses no threat to Earth.

The addition of the new observatories to the ATLAS system comes at a time when the agency’s Planetary Defense efforts are on the rise. NASA’s Double Asteroid Redirection Test (DART)—the world’s first full-scale mission to test a technology for defending Earth against potential asteroid impacts—launched November 24, 2021 on a (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) return; js = d.createElement(s); js.id = id; js.src = "https://connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.6"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk'));

Read original article here

Leave a Comment