Dead Star Caught Violently Tearing Up Planetary System

This illustration shows a white dwarf star siphoning off debris from shattered objects in a planetary system. The Hubble Space Telescope detects the spectral signature of the vaporized debris that revealed a combination of rocky-metallic and icy material, the ingredients of planets. The findings help describe the violent nature of evolved planetary systems and the composition of their disintegrating bodies. Credit: NASA, ESA, Joseph Olmsted (STScI)

Both Rocky and Icy Bodies Were Identified Among the Debris on the Surface of a White Dwarf Star

“Bring out your dead!” rings in the air in the classic movie “Monty Python and the Holy Grail,” a merry parallel to what’s happening around a


A star’s death throes have so violently disrupted its planetary system that the dead star left behind, called a white dwarf, is siphoning off debris from both the system’s inner and outer reaches. This is the first time astronomers have observed a white dwarf star that is consuming both rocky-metallic and icy material, the ingredients of planets. Archival data from NASA’s Hubble Space Telescope and other NASA observatories were essential in diagnosing this case of cosmic cannibalism. The findings help describe the violent nature of evolved planetary systems and can tell astronomers about the makeup of newly forming systems. Credit: NASA’s Goddard Space Flight Center; Lead Producer: Paul Morris

Dead Star Caught Ripping Up Planetary System

A star’s death throes have so violently disrupted its planetary system that the dead star left behind, called a white dwarf, is siphoning off debris from both the system’s inner and outer reaches. This is the first time astronomers have observed a white dwarf star that is consuming both rocky-metallic and icy material, the ingredients of planets.

Archival data from NASA’s Hubble Space Telescope and other NASA observatories were essential in diagnosing this case of cosmic cannibalism. The findings help describe the violent nature of evolved planetary systems and can tell astronomers about the makeup of newly forming systems.

The findings are based on analyzing material captured by the atmosphere of the nearby white dwarf star G238-44. A white dwarf is what remains of a star like our Sun after it sheds its outer layers and stops burning fuel through nuclear fusion. “We have never seen both of these kinds of objects accreting onto a white dwarf at the same time,” said Ted Johnson, the lead researcher and recent University of California, Los Angeles (UCLA) bachelor’s graduate. “By studying these white dwarfs, we hope to gain a better understanding of planetary systems that are still intact.”

Planetary System G238-44

This illustrated diagram of the planetary system G238-44 traces its destruction. The tiny white dwarf star is at the center of the action. A very faint accretion disk is made up of the pieces of shattered bodies falling onto the white dwarf. The remaining asteroids and planetary bodies make up a reservoir of material surrounding the star. Larger gas giant planets may still exist in the system. Much farther out is a belt of icy bodies such as comets, which also ultimately feed the dead star. Credit: NASA, ESA, Joseph Olmsted (STScI)

The findings are also intriguing because small icy objects are credited for crashing into and “irrigating” dry, rocky planets in our solar system. Billions of years ago comets and asteroids are thought to have delivered water to Earth, sparking the conditions necessary for life as we know it. The makeup of the bodies detected raining onto the white dwarf implies that icy reservoirs might be common among planetary systems, said Johnson.

“Life as we know it requires a rocky planet covered with a variety of elements like carbon, nitrogen, and oxygen,” said Benjamin Zuckerman, UCLA professor and co-author. “The abundances of the elements we see on this white dwarf appear to require both a rocky and a volatile-rich parent body – the first example we’ve found among studies of hundreds of white dwarfs.”

Demolition Derby

Theories of planetary system evolution describe the transition between a red giant star and white dwarf phases as a chaotic process. The star quickly loses its outer layers and its planets’ orbits dramatically change. Small objects, like asteroids and dwarf planets, can venture too close to giant planets and be sent plummeting toward the star. This study confirms the true scale of this violent chaotic phase, showing that within 100 million years after the beginning of its white dwarf phase, the star is able to simultaneously capture and consume material from its asteroid belt and Kuiper belt-like regions.

The estimated total mass eventually gobbled up by the white dwarf in this study may be no more than the mass of an asteroid or small moon. While the presence of at least two objects that the white dwarf is consuming is not directly measured, it’s likely one is metal-rich like an asteroid and another is an icy body similar to what’s found at the fringe of our solar system in the Kuiper belt.

Though astronomers have cataloged over 5,000 exoplanets, the only planet where we have some direct knowledge of its interior makeup is Earth. The white dwarf cannibalism provides a unique opportunity to take planets apart and see what they were made of when they first formed around the star.

The team measured the presence of nitrogen, oxygen, magnesium, silicon, and iron, among other elements. The detection of iron in a very high abundance is evidence for metallic cores of terrestrial planets, like Earth,

Read original article here

Leave a Comment