Astronomers “Blown Away” by First Breathtaking Webb Space Telescope Images of Orion Nebula

The inner region of the Orion Nebula as seen by the James Webb Space Telescope’s NIRCam instrument. This is a composite image from several filters that represents emissions from ionized gas, molecular gas, hydrocarbons, dust, and scattered starlight. Most prominent is the Orion Bar, a wall of dense gas and dust that runs from the top left to the bottom right in this image, and that contains the bright star θ2 Orionis A. The scene is illuminated by a group of hot, young massive stars (known as the Trapezium Cluster) which is located just off the top right of the image. The strong and harsh ultraviolet radiation of the Trapezium cluster creates a hot, ionized environment in the upper right, and slowly erodes the Orion Bar away. Molecules and dust can survive longer in the shielded environment offered by the dense Bar, but the surge of stellar energy sculpts a region that displays an incredible richness of filaments, globules, young stars with disks and cavities. Credit: NASA, ESA, CSA, Data reduction and analysis: PDRs4All ERS Team; graphical processing S. Fuenmayor

New Webb pictures reveal spectacular view of Orion Nebula

JWST Inner Orion Nebula

Young star with disk inside its cocoon: Planet forming disks of gas and dust around a young star. These disks are being dissipated or “photo-evaporated” due to the strong radiation field of the nearby stars of the Trapezium creating a cocoon of dust and gas around them. Almost 180 of these externally illuminated photoevaporating disks around young stars (aka Proplyds) have been discovered in the Orion nebula, and HST-10 (the one in the picture) is one of the largest known. The orbit of Neptune is shown for comparison.
Filaments: The entire image is rich in filaments of different sizes and shapes. The inset here shows thin, meandering filaments that are especially rich in hydrocarbon molecules and molecular hydrogen.
θ2 Orionis A: The brightest star in this image is θ2 Orionis A, a star that is just bright enough to be seen with the naked eye from a dark location on Earth. Stellar light that is reflecting off dust grains causes the red glow in its immediate surroundings.
Young star inside globule: When dense clouds of gas and dust become gravitationally unstable, they collapse into stellar embryos that gradually grow more massive until they can start nuclear fusion in their core – they start to shine. This young star is still embedded in its natal cloud.
Credit: NASA, ESA, CSA, Data reduction and analysis: PDRs4All ERS Team; graphical processing S. Fuenmayor & O. Berné

“These new observations allow us to better understand how massive stars transform the gas and dust cloud in which they are born,” said Peeters. She is a Western astronomy professor and faculty member at the Institute for Earth and Space Exploration.

“Massive young stars emit large quantities of ultraviolet radiation directly into the native cloud that still surrounds them, and this changes the physical shape of the cloud as well as its chemical makeup. How precisely this works, and how it affects further star and planet formation is not yet well known.”

The newly released images reveal numerous spectacular structures inside the nebula, down to scales comparable to the size of the Solar System.

“We clearly see several dense filaments. These filamentary structures may promote a new generation of stars in the deeper regions of the cloud of dust and gas. Stellar systems already in formation show up as well,” said Berné. “Inside its cocoon, young stars with a disk of dust and gas in which planets form are observed in the nebula. Small cavities dug by new stars being blown by the intense radiation and stellar winds of newborn stars are also clearly visible.”

Proplyds, or ionized protoplanetary disks, consist of a central protostar surrounded by a disk of dust and gas in which planets form. Scattered throughout the images are several protostellar jets, outflows, and nascent stars embedded in dust.

“We have never been able to see the intricate fine details of how interstellar matter is structured in these environments, and to figure out how planetary systems can form in the presence of this harsh radiation. These images reveal the heritage of the interstellar medium in planetary systems,” said Habart.

Orion Nebula JWST vs Hubble Space Telescope

Orion Nebula: JWST versus Hubble Space Telescope (HST): The inner region of the Orion Nebula as seen by both the Hubble Space Telescope (left) and the James Webb Space Telescope (right). The HST image is dominated by emission from hot ionized gas, highlighting the side of the Orion Bar which is facing the Trapezium Cluster (off the top right of the image). The JWST image also shows the cooler molecular material that is slightly further away from the Trapezium Cluster (compare the location of the Orion Bar relative to the bright star θ2 Orionis A for example). Webb’s sensitive infrared vision can furthermore peer through thick dust layers and see fainter stars. This will allow scientists to study what is happening deep inside the nebula.
Credit: NASA, ESA, CSA, PDRs4All ERS Team; image processing Olivier Berné.
Credit for the HST image: NASA/STScI/Rice Univ./C.O’Dell et al. – Program ID: PRC95-45a. Technical details: The HST image used WFPC2 mosaic. This composite image uses [OIII] (blue), ionized hydrogen (green), and [NII] (red).

Analog evolution

The Orion Nebula has long been considered an environment similar to the cradle of the solar system (when it formed more than 4.5 billion years ago). This is why scientists today are interested in observing the Orion Nebula. They hope to understand, by analogy, what happened during the first million years of our planetary evolution.

Because the hearts of stellar nurseries like the Orion Nebula are obscured by large amounts of stardust, it makes it impossible to study what is happening inside them in visible light with telescopes like the Hubble Space Telescope. Webb detects the infrared light of the cosmos, which allows astronomers to see through these layers of dust and reveal the action happening deep inside the Nebula.

Orion Nebula JWST vs Spitzer Space Telescope

The inner region of the Orion Nebula as seen by both the Spitzer Space Telescope (left) and the James Webb Space Telescope (right). Both images were recorded with a filter that is particularly sensitive to the emission from hydrocarbon dust that glows throughout the entire image. This comparison strikingly illustrates how incredibly sharp Webb’s images are in comparison to its infrared precursor, the Spitzer Space Telescope. This is immediately clear from the intricate filaments, but Webb’s sharp eyes also allow us to better distinguish stars from globules and protoplanetary disks.
Credit for NIRCam image: NASA, ESA, CSA, PDRs4All ERS Team; image processing Olivier Berné.
Credit for the Spitzer image: NASA/JPL-Caltech/T. Megeath (University of Toledo, Ohio)
Technical details: The Spitzer image shows infrared light at 3.6 microns captured by Spitzer’s infrared array camera (IRAC). The JWST image shows infrared light at 3.35 microns captured by JWST NIRCam. Black pixels are artifacts due to saturation of the detectors by bright stars.

“Observing the Orion Nebula was a challenge because it is very bright for Webb’s unprecedented sensitive instruments. But Webb is incredible, Webb can observe distant and faint galaxies, as well as

Read original article here

Leave a Comment