Long COVID: major findings, mechanisms and recommendations

  • Ballering, A. V., van Zon, S. K. R., Hartman, T. C. O. & Rosmalen, J. G. M. Persistence of somatic symptoms after COVID-19 in the Netherlands: an observational cohort study. Lancet 400, 452–461 (2022).

    Article 
    CAS 

    Google Scholar 

  • Bull-Otterson, L. Post–COVID conditions among adult COVID-19 survivors aged 18–64 and ≥65 years — United States, March 2020–November 2021. MMWR Morb. Mortal. Wkly Rep. 71, 713 (2022).

    Article 
    CAS 

    Google Scholar 

  • Ceban, F. et al. Fatigue and cognitive impairment in post-COVID-19 syndrome: a systematic review and meta-analysis. Brain Behav. Immun. 101, 93–135 (2022).

    Article 
    CAS 

    Google Scholar 

  • Al-Aly, Z., Bowe, B. & Xie, Y. Long COVID after breakthrough SARS-CoV-2 infection. Nat. Med. https://doi.org/10.1038/s41591-022-01840-0 (2022).

    Article 

    Google Scholar 

  • Ayoubkhani, D. et al. Risk of Long Covid in people infected with SARS-CoV-2 after two doses of a COVID-19 vaccine: community-based, matched cohort study. Preprint at medRxiv https://doi.org/10.1101/2022.02.23.22271388 (2022).

  • FAIR Health. Patients Diagnosed with Post-COVID Conditions: An Analysis of Private Healthcare Claims Using the Official ICD-10 Diagnostic Code (FAIR Health, 2022).

  • Davis, H. E. et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. eClinicalMedicine 38, 101019 (2021).

    Article 

    Google Scholar 

  • Xie, Y., Xu, E., Bowe, B. & Al-Aly, Z. Long-term cardiovascular outcomes of COVID-19. Nat. Med. 28, 583–590 (2022).

    Article 
    CAS 

    Google Scholar 

  • Xie, Y. & Al-Aly, Z. Risks and burdens of incident diabetes in long COVID: a cohort study. Lancet Diabetes Endocrinol. 10, 311–321 (2022).

    Article 
    CAS 

    Google Scholar 

  • Mancini, D. M. et al. Use of cardiopulmonary stress testing for patients with unexplained dyspnea post–coronavirus disease. JACC Heart Fail. 9, 927–937 (2021).

    Article 

    Google Scholar 

  • Kedor, C. et al. A prospective observational study of post-COVID-19 chronic fatigue syndrome following the first pandemic wave in Germany and biomarkers associated with symptom severity. Nat. Commun. 13, 5104 (2022).

    Article 
    CAS 

    Google Scholar 

  • Larsen, N. W. et al. Characterization of autonomic symptom burden in long COVID: a global survey of 2314 adults. Front. Neurol. 13, 1012668 (2022).

    Article 

    Google Scholar 

  • Demko, Z. O. et al. Post-acute sequelae of SARS-CoV-2 (PASC) impact quality of life at 6, 12 and 18 months post-infection. Preprint at medRxiv https://doi.org/10.1101/2022.08.08.22278543 (2022).

  • Cairns, R. & Hotopf, M. A systematic review describing the prognosis of chronic fatigue syndrome. Occup. Med. Oxf. Engl. 55, 20–31 (2005).

    Article 
    CAS 

    Google Scholar 

  • Bach, K. Is ‘long Covid’ worsening the labor shortage? Brookings https://www.brookings.edu/research/is-long-covid-worsening-the-labor-shortage/ (2022).

  • Swank, Z. et al. Persistent circulating severe acute respiratory syndrome coronavirus 2 spike is associated with post-acute coronavirus disease 2019 sequelae. Clin. Infect. Dis. https://doi.org/10.1093/cid/ciac722 (2022).

    Article 

    Google Scholar 

  • Proal, A. D. & VanElzakker, M. B. Long COVID or post-acute sequelae of COVID-19 (PASC): an overview of biological factors that may contribute to persistent symptoms. Front. Microbiol. 12, 698169 (2021).

    Article 

    Google Scholar 

  • Klein, J. et al. Distinguishing features of Long COVID identified through immune profiling. Preprint at medRxiv https://doi.org/10.1101/2022.08.09.22278592 (2022).

  • Glynne, P., Tahmasebi, N., Gant, V. & Gupta, R. Long COVID following mild SARS-CoV-2 infection: characteristic T cell alterations and response to antihistamines. J. Investig. Med. 70, 61–67 (2022).

    Article 

    Google Scholar 

  • Phetsouphanh, C. et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat. Immunol. 23, 210–216 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zubchenko, S., Kril, I., Nadizhko, O., Matsyura, O. & Chopyak, V. Herpesvirus infections and post-COVID-19 manifestations: a pilot observational study. Rheumatol. Int. https://doi.org/10.1007/s00296-022-05146-9 (2022).

    Article 

    Google Scholar 

  • Peluso, M. J. et al. Evidence of recent Epstein-Barr virus reactivation in individuals experiencing Long COVID. Preprint at medRxiv https://doi.org/10.1101/2022.06.21.22276660 (2022).

    Article 

    Google Scholar 

  • Yeoh, Y. K. et al. Gut microbiota composition reflects disease severity and dysfunctional immune responses in patients with COVID-19. Gut 70, 698–706 (2021).

    Article 
    CAS 

    Google Scholar 

  • Liu, Q. et al. Gut microbiota dynamics in a prospective cohort of patients with post-acute COVID-19 syndrome. Gut 71, 544–552 (2022).

    Article 
    CAS 

    Google Scholar 

  • Mendes de Almeida, V. Gut microbiota from patients with mild COVID-19 cause alterations in mice that resemble post-COVID syndrome. Res. Sq. https://doi.org/10.21203/rs.3.rs-1756189/v1 (2022).

    Article 

    Google Scholar 

  • Wallukat, G. et al. Functional autoantibodies against G-protein coupled receptors in patients with persistent long-COVID-19 symptoms. J. Transl Autoimmun. 4, 100100 (2021).

    Article 
    CAS 

    Google Scholar 

  • Su, Y. et al. Multiple early factors anticipate post-acute COVID-19 sequelae. Cell 185, 881–895.e20 (2022).

    Article 
    CAS 

    Google Scholar 

  • Arthur, J. M. et al. Development of ACE2 autoantibodies after SARS-CoV-2 infection. PLoS ONE 16, e0257016 (2021).

    Article 
    CAS 

    Google Scholar 

  • Haffke, M. et al. Endothelial dysfunction and altered endothelial biomarkers in patients with post-COVID-19 syndrome and chronic fatigue syndrome (ME/CFS). J. Transl Med. 20, 138 (2022).

    Article 
    CAS 

    Google Scholar 

  • Charfeddine, S. Long COVID 19 syndrome: is it related to microcirculation and endothelial dysfunction? Insights from TUN-EndCOV study. Front. Cardiovasc. Med. https://doi.org/10.3389/fcvm.2021.745758 (2021).

    Article 

    Google Scholar 

  • Pretorius, E. et al. Prevalence of symptoms, comorbidities, fibrin amyloid microclots and platelet pathology in individuals with Long COVID/post-acute sequelae of COVID-19 (PASC). Cardiovasc. Diabetol. 21, 148 (2022).

    Article 
    CAS 

    Google Scholar 

  • Spudich, S. & Nath, A. Nervous system consequences of COVID-19. Science 375, 267–269 (2022).

    Article 
    CAS 

    Google Scholar 

  • Renz-Polster, H., Tremblay, M.-E., Bienzle, D. & Fischer, J. E. The pathobiology of myalgic encephalomyelitis/chronic fatigue syndrome: the case for neuroglial failure. Front. Cell. Neurosci. 16, 888232 (2022).

    Article 
    CAS 

    Google Scholar 

  • Merzon, E. et al. Clinical and socio-demographic variables associated with the diagnosis of long COVID syndrome in youth: a population-based study. Int. J. Environ. Res. Public Health 19, 5993 (2022).

    Article 
    CAS 

    Google Scholar 

  • CDC. Long COVID – household pulse survey – COVID-19. CDC https://www.cdc.gov/nchs/covid19/pulse/long-covid.htm (2022).

  • Williamson, A. E., Tydeman, F., Miners, A., Pyper, K. & Martineau, A. R. Short-term and long-term impacts of COVID-19 on economic vulnerability: a population-based longitudinal study (COVIDENCE UK). BMJ Open 12, e065083 (2022).

    Article 

    Google Scholar 

  • Ziauddeen, N. et al. Characteristics and impact of Long Covid: findings from an online survey. PLoS ONE 17, e0264331 (2022).

    Article 
    CAS 

    Google Scholar 

  • Choutka, J., Jansari, V., Hornig, M. & Iwasaki, A. Unexplained post-acute infection syndromes. Nat. Med. 28, 911–923 (2022).

    Article 
    CAS 

    Google Scholar 

  • Komaroff, A. L. & Lipkin, W. I. Insights from myalgic encephalomyelitis/chronic fatigue syndrome may help unravel the pathogenesis of postacute COVID-19 syndrome. Trends Mol. Med. 27, 895–906 (2021).

    Article 
    CAS 

    Google Scholar 

  • Schultheiß, C. et al. From online data collection to identification of disease mechanisms: the IL-1ß, IL-6 and TNF-α cytokine triad is associated with post-acute sequelae of COVID-19 in a digital research cohort. SSRN https://doi.org/10.2139/ssrn.3963839 (2021).

    Article 

    Google Scholar 

  • Peluso, M. J. et al. Markers of immune activation and inflammation in individuals with postacute sequelae of severe acute respiratory syndrome coronavirus 2 infection. J. Infect. Dis. 224, 1839–1848 (2021).

    Article 
    CAS 

    Google Scholar 

  • Fernández-Castañeda, A. et al. Mild respiratory SARS-CoV-2 infection can cause multi-lineage cellular dysregulation and myelin loss in the brain. Preprint at bioRxiv https://doi.org/10.1101/2022.01.07.475453 (2022).

    Article 

    Google Scholar 

  • Hornig, M. et al. Distinct plasma immune signatures in ME/CFS are present early in the course of illness. Sci. Adv. 1, e1400121 (2015).

    Article 

    Google Scholar 

  • Wang, E. Y. et al. Diverse functional autoantibodies in patients with COVID-19. Nature 595, 283–288 (2021).

    Article 
    CAS 

    Google Scholar 

  • Shikova, E. et al. Cytomegalovirus, Epstein-Barr virus, and human herpesvirus-6 infections in patients with myalgic еncephalomyelitis/chronic fatigue syndrome. J. Med. Virol. 92, 3682–3688 (2020).

    Article 
    CAS 

    Google Scholar 

  • Schreiner, P. et al. Human herpesvirus-6 reactivation, mitochondrial fragmentation, and the coordination of antiviral and metabolic phenotypes in myalgic encephalomyelitis/chronic fatigue syndrome. Immunohorizons 4, 201–215 (2020).

    Article 
    CAS 

    Google Scholar 

  • García-Abellán, J. et al. Antibody response to SARS-CoV-2 is associated with long-term clinical outcome in patients with COVID-19: a longitudinal study. J. Clin. Immunol. 41, 1490–1501 (2021).

    Article 

    Google Scholar 

  • Augustin, M. et al. Post-COVID syndrome in non-hospitalised patients with COVID-19: a longitudinal prospective cohort study. Lancet Reg. Health Eur. 6, 100122 (2021).

    Article 

    Google Scholar 

  • Talla, A. et al. Longitudinal immune dynamics of mild COVID-19 define signatures of recovery and persistence. Preprint at bioRxiv https://doi.org/10.1101/2021.05.26.442666 (2021).

    Article 

    Google Scholar 

  • Peluso, M. J. et al. Long-term SARS-CoV-2-specific immune and inflammatory responses in individuals recovering from COVID-19 with and without post-acute symptoms. Cell Rep. 36, 109518 (2021).

    Article 
    CAS 

    Google Scholar 

  • Hu, F. et al. A compromised specific humoral immune response against the SARS-CoV-2 receptor-binding domain is related to viral persistence and periodic shedding in the gastrointestinal tract. Cell. Mol. Immunol. 17, 1119–1125 (2020).

    Article 
    CAS 

    Google Scholar 

  • Korte, W. et al. SARS-CoV-2 IgG and IgA antibody response is gender dependent; and IgG antibodies rapidly decline early on. J. Infect. 82, e11–e14 (2021).

    Article 
    CAS 

    Google Scholar 

  • Jo, W. et al. A two-phase, single cohort study of COVID-19 antibody sera-surveillance. Ann. Epidemiol. Public Health 4, 1055 (2021).

    Article 

    Google Scholar 

  • Nomura, Y. et al. Attenuation of antibody titers from 3 to 6 months after the second dose of the BNT162b2 vaccine depends on sex, with age and smoking risk factors for lower antibody titers at 6 months. Vaccines 9, 1500 (2021).

    Article 
    CAS 

    Google Scholar 

  • Tejerina, F. et al. Post-COVID-19 syndrome. SARS-CoV-2 RNA detection in plasma, stool, and urine in patients with persistent symptoms after COVID-19. BMC Infect. Dis. 22, 211 (2022).

    Article 
    CAS 

    Google Scholar 

  • Goh, D. et al. Persistence of residual SARS-CoV-2 viral antigen and RNA in tissues of patients with long COVID-19. Preprint at https://www.researchsquare.com/article/rs-1379777/v1 (2022).

  • Ceulemans, L. J. et al. Persistence of SARS-CoV-2 RNA in lung tissue after mild COVID-19. Lancet Respir. Med. 9, e78–e79 (2021).

    Article 
    CAS 

    Google Scholar 

  • Gaebler, C. et al. Evolution of antibody immunity to SARS-CoV-2. Nature 591, 639–644 (2021).

    Article 
    CAS 

    Google Scholar 

  • Menuchin-Lasowski, Y. et al. SARS-CoV-2 infects and replicates in photoreceptor and retinal ganglion cells of human retinal organoids. Stem Cell Rep 17, 789–803 (2022).

    Article 
    CAS 

    Google Scholar 

  • Cheung, C. C. L. et al. Residual SARS-CoV-2 viral antigens detected in GI and hepatic tissues from five recovered patients with COVID-19. Gut 71, 226–229 (2022).

    Article 
    CAS 

    Google Scholar 

  • Natarajan, A. et al. Gastrointestinal symptoms and fecal shedding of SARS-CoV-2 RNA suggest prolonged gastrointestinal infection. Med 3, 371–387.e9 (2022).

    Article 
    CAS 

    Google Scholar 

  • Katsoularis, I. et al. Risks of deep vein thrombosis, pulmonary embolism, and bleeding after covid-19: nationwide self-controlled cases series and matched cohort study. BMJ 377, e069590 (2022).

    Article 

    Google Scholar 

  • Pretorius, E. et al. Persistent clotting protein pathology in Long COVID/post-acute sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovasc. Diabetol. 20, 172 (2021).

    Article 
    CAS 

    Google Scholar 

  • Kubánková, M. et al. Physical phenotype of blood cells is altered in COVID-19. Biophys. J. 120, 2838–2847 (2021).

    Article 

    Google Scholar 

  • Osiaevi, I. et al. Persistent capillary rarefication in long COVID syndrome. Angiogenesis https://doi.org/10.1007/s10456-022-09850-9 (2022).

    Article 

    Google Scholar 

  • Patel, M. A. et al. Elevated vascular transformation blood biomarkers in long-COVID indicate angiogenesis as a key pathophysiological mechanism. Mol. Med. 28, 122 (2022).

    Article 
    CAS 

    Google Scholar 

  • Puntmann, V. O. et al. Outcomes of cardiovascular magnetic resonance imaging in patients recently recovered from coronavirus disease 2019 (COVID-19). JAMA Cardiol 5, 1265–1273 (2020).

    Article 

    Google Scholar 

  • Roca-Fernández, A. et al. Cardiac impairment in Long Covid 1-year post-SARS-CoV-2 infection. Eur. Heart J. 43, ehac544.219 (2022).

    Article 

    Google Scholar 

  • Dennis, A. et al. Multiorgan impairment in low-risk individuals with post-COVID-19 syndrome: a prospective, community-based study. BMJ Open 11, e048391 (2021).

    Article 

    Google Scholar 

  • Dennis, A. et al. Multi-organ impairment and Long COVID: a 1-year prospective, longitudinal cohort study. Preprint at medRxiv https://doi.org/10.1101/2022.03.18.22272607 (2022).

  • Bowe, B., Xie, Y., Xu, E. & Al-Aly, Z. Kidney outcomes in Long COVID. J. Am. Soc. Nephrol. 32, 2851–2862 (2021).

    Article 
    CAS 

    Google Scholar 

  • Almufarrij, I. & Munro, K. J. One year on: an updated systematic review of SARS-CoV-2, COVID-19 and audio-vestibular symptoms. Int. J. Audiol. 60, 935–945 (2021).

    Article 

    Google Scholar 

  • Holdsworth, D. A. et al. Comprehensive clinical assessment identifies specific neurocognitive deficits in working-age patients with long-COVID. PLoS ONE 17, e0267392 (2022).

    Article 
    CAS 

    Google Scholar 

  • Cysique, L. A. et al. Post-acute COVID-19 cognitive impairment and decline uniquely associate with kynurenine pathway activation: a longitudinal observational study. Preprint at medRxiv https://doi.org/10.1101/2022.06.07.22276020 (2022).

  • Crivelli, L. et al. Changes in cognitive functioning after COVID-19: a systematic review and meta-analysis. Alzheimers Dement. 18, 1047–1066 (2022).

    Article 
    CAS 

    Google Scholar 

  • Woo, M. S. et al. Frequent neurocognitive deficits after recovery from mild COVID-19. Brain Commun. 2, fcaa205 (2020).

    Article 

    Google Scholar 

  • Taquet, M. et al. Neurological and psychiatric risk trajectories after SARS-CoV-2 infection: an analysis of 2-year retrospective cohort studies including 1 284 437 patients. Lancet Psychiatry 9, 815–827 (2022).

    Article 

    Google Scholar 

  • Reiken, S. et al. Alzheimer’s-like signaling in brains of COVID-19 patients. Alzheimers Dement. 18, 955–965 (2022).

    Article 
    CAS 

    Google Scholar 

  • Charnley, M. et al. Neurotoxic amyloidogenic peptides in the proteome of SARS-COV2: potential implications for neurological symptoms in COVID-19. Nat. Commun. 13, 3387 (2022).

    Article 
    CAS 

    Google Scholar 

  • Visser, D. et al. Long COVID is associated with extensive in-vivo neuroinflammation on [18F]DPA-714 PET. Preprint at medRxiv https://doi.org/10.1101/2022.06.02.22275916 (2022).

  • Guedj, E. et al. 18F-FDG brain PET hypometabolism in patients with long COVID. Eur. J. Nucl. Med. Mol. Imaging 48, 2823–2833 (2021).

    Article 
    CAS 

    Google Scholar 

  • Hugon, J. et al. Cognitive decline and brainstem hypometabolism in long COVID: a case series. Brain Behav. 12, e2513 (2022).

    Article 
    CAS 

    Google Scholar 

  • Apple, A. C. et al. Risk factors and abnormal cerebrospinal fluid associate with cognitive symptoms after mild COVID-19. Ann. Clin. Transl Neurol. 9, 221–226 (2022).

    Article 
    CAS 

    Google Scholar 

  • Douaud, G. et al. SARS-CoV-2 is associated with changes in brain structure in UK Biobank. Nature 604, 697–707 (2022).

    Article 
    CAS 

    Google Scholar 

  • Peluso, M. J. et al. SARS-CoV-2 and mitochondrial proteins in neural-derived exosomes of COVID-19. Ann. Neurol. 91, 772–781 (2022).

    Article 
    CAS 

    Google Scholar 

  • Villaume, W. A. Marginal BH4 deficiencies, iNOS, and self-perpetuating oxidative stress in post-acute sequelae of Covid-19. Med. Hypotheses 163, 110842 (2022).

    Article 
    CAS 

    Google Scholar 

  • Bitirgen, G. et al. Corneal confocal microscopy identifies corneal nerve fibre loss and increased dendritic cells in patients with long COVID. Br. J. Ophthalmol. https://doi.org/10.1136/bjophthalmol-2021-319450 (2021).

    Article 

    Google Scholar 

  • Barros, A. et al. Small fiber neuropathy in the cornea of Covid-19 patients associated with the generation of ocular surface disease. Ocul. Surf. 23, 40–48 (2022).

    Article 

    Google Scholar 

  • Bitirgen, G. et al. Abnormal quantitative pupillary light responses following COVID-19. Int. Ophthalmol. https://doi.org/10.1007/s10792-022-02275-9 (2022).

    Article 

    Google Scholar 

  • Mardin, C. Y. et al. Possible impact of functional active GPCR-autoantibodies on retinal microcirculation in long-COVID. Invest. Ophthalmol. Vis. Sci. 63, 3315–F0124 (2022).

    Google Scholar 

  • Zhang, B.-Z. et al. SARS-CoV-2 infects human neural progenitor cells and brain organoids. Cell Res. 30, 928–931 (2020).

    Article 
    CAS 

    Google Scholar 

  • Sen, S. et al. Retinal manifestations in patients with SARS-CoV-2 infection and pathogenetic implications: a systematic review. Int. Ophthalmol. 42, 323–336 (2022).

    Article 

    Google Scholar 

  • Frere, J. J. et al. SARS-CoV-2 infection in hamsters and humans results in lasting and unique systemic perturbations post recovery. Sci. Transl Med. 14, eabq3059 (2022).

    Article 
    CAS 

    Google Scholar 

  • Rutkai, I. et al. Neuropathology and virus in brain of SARS-CoV-2 infected non-human primates. Nat. Commun. 13, 1745 (2022).

    Article 
    CAS 

    Google Scholar 

  • Committee on the Diagnostic Criteria for Myalgic Encephalomyelitis/Chronic Fatigue Syndrome, Board on the Health of Select Populations, & Institute of Medicine. Beyond Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: Redefining an Illness (National Academies Press, 2015).

  • Bateman, L. et al. Myalgic encephalomyelitis/chronic fatigue syndrome: essentials of diagnosis and management. Mayo Clin. Proc. 96, 2861–2878 (2021).

    Article 

    Google Scholar 

  • The ME Association. Index of ME/CFS published research – Nov 2022. 224 Index of ME/CFS Published Research. The ME Association https://meassociation.org.uk/ (2022).

  • Seltzer, J. & Thomas, J. ME Research Summary 2019 (The ME Association, 2019).

  • Wong, T. L. & Weitzer, D. J. Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS)-a systemic review and comparison of clinical presentation and symptomatology. Med. (Kaunas.) 57, 418 (2021).

    Google Scholar 

  • Twomey, R. et al. Chronic fatigue and postexertional malaise in people living with Long COVID: an observational study. Phys. Ther. 102, pzac005 (2022).

    Article 

    Google Scholar 

  • Vernon, S. D. et al. Orthostatic challenge causes distinctive symptomatic, hemodynamic and cognitive responses in Long COVID and myalgic encephalomyelitis/chronic fatigue syndrome. Front. Med. 9, 917019 (2022).

    Article 

    Google Scholar 

  • Lam, M. H.-B. et al. Mental morbidities and chronic fatigue in severe acute respiratory syndrome survivors: long-term follow-up. Arch. Intern. Med. 169, 2142–2147 (2009).

    Article 

    Google Scholar 

  • Keller, B. A., Pryor, J. L. & Giloteaux, L. Inability of myalgic encephalomyelitis/chronic fatigue syndrome patients to reproduce VO2peak indicates functional impairment. J. Transl Med. 12, 104 (2014).

    Article 

    Google Scholar 

  • Saha, A. K. et al. Erythrocyte deformability as a potential biomarker for chronic fatigue syndrome. Blood 132, 4874 (2018).

    Article 

    Google Scholar 

  • Díaz-Resendiz, K. J. G. et al. Loss of mitochondrial membrane potential (ΔΨm) in leucocytes as post-COVID-19 sequelae. J. Leukoc. Biol. 112, 23–29 (2022).

    Article 

    Google Scholar 

  • Pozzi, A. COVID-19 and mitochondrial non-coding RNAs: new insights from published data. Front. Physiol. 12, 805005 (2022).

    Article 

    Google Scholar 

  • Guntur, V. P. et al. Signatures of mitochondrial dysfunction and impaired fatty acid metabolism in plasma of patients with post-acute sequelae of COVID-19 (PASC). Metabolites 12, 1026 (2022).

    Article 
    CAS 

    Google Scholar 

  • Paul, B. D., Lemle, M. D., Komaroff, A. L. & Snyder, S. H. Redox imbalance links COVID-19 and myalgic encephalomyelitis/chronic fatigue syndrome. Proc. Natl Acad. Sci. USA 118, e2024358118 (2021).

    Article 
    CAS 

    Google Scholar 

  • Wright, J., Astill, S. L. & Sivan, M. The relationship between physical activity and Long COVID: a cross-sectional study. Int. J. Environ. Res. Public Health 19, 5093 (2022).

    Article 
    CAS 

    Google Scholar 

  • Heerdt, P. M., Shelley, B. & Singh, I. Impaired systemic oxygen extraction long after mild COVID-19: potential perioperative implications. Br. J. Anaesth. 128, e246–e249 (2022).

    Article 
    CAS 

    Google Scholar 

  • Novak, P. et al. Multisystem involvement in post-acute sequelae of coronavirus disease 19. Ann. Neurol. 91, 367–379 (2022).

    Article 
    CAS 

    Google Scholar 

  • Holmes, E. et al. Incomplete systemic recovery and metabolic phenoreversion in post-acute-phase nonhospitalized COVID-19 patients: implications for assessment of post-acute COVID-19 syndrome. J. Proteome Res. 20, 3315–3329 (2021).

    Article 
    CAS 

    Google Scholar 

  • van Campen, C. L. M. C. & Visser, F. C. Orthostatic intolerance in long-haul COVID after SARS-CoV-2: a case-control comparison with post-EBV and insidious-onset myalgic encephalomyelitis/chronic fatigue syndrome patients. Healthcare 10, 2058 (2022).

    Article 

    Google Scholar 

  • van Campen, C. L. M. C. & Visser, F. C. Long-Haul COVID patients: prevalence of POTS are reduced but cerebral blood flow abnormalities remain abnormal with longer disease duration. Healthcare 10, 2105 (2022).

    Article 

    Google Scholar 

  • Nunes, J. M., Kruger, A., Proal, A., Kell, D. B. & Pretorius, E. The occurrence of hyperactivated platelets and fibrinaloid microclots in myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Pharmaceuticals 15, 931 (2022).

    Article 
    CAS 

    Google Scholar 

  • Hoad, A., Spickett, G., Elliott, J. & Newton, J. Postural orthostatic tachycardia syndrome is an under-recognized condition in chronic fatigue syndrome. QJM 101, 961–965 (2008).

    Article 
    CAS 

    Google Scholar 

  • Shaw, B. H. et al. The face of postural tachycardia syndrome – insights from a large cross‐sectional online community‐based survey. J. Intern. Med. 286, 438–448 (2019).

    Article 
    CAS 

    Google Scholar 

  • Raj, S. R. et al. Postural orthostatic tachycardia syndrome (POTS): priorities for POTS care and research from a 2019 National Institutes of Health expert consensus meeting – part 2. Auton. Neurosci. Basic. Clin. 235, 102836 (2021).

    Article 

    Google Scholar 

  • Oaklander, A. L. et al. Peripheral neuropathy evaluations of patients with prolonged Long COVID. Neurol. Neuroimmunol. Neuroinflamm. 9, e1146 (2022).

    Article 

    Google Scholar 

  • Larsen, N. W. et al. Characterization of autonomic symptom burden in long COVID: a global survey of 2,314 adults. Front. Neurol. 13, 1012668 (2022).

    Article 

    Google Scholar 

  • Weinstock, L. B. et al. Mast cell activation symptoms are prevalent in Long-COVID. Int. J. Infect. Dis. 112, 217–226 (2021).

    Article 
    CAS 

    Google Scholar 

  • Boneva, R. S. et al. Endometriosis as a comorbid condition in chronic fatigue syndrome (CFS): secondary analysis of data from a CFS case-control study. Front. Pediatr. 7, 195 (2019).

    Article 

    Google Scholar 

  • Bragée, B. et al. Signs of intracranial hypertension, hypermobility, and craniocervical obstructions in patients with myalgic encephalomyelitis/chronic fatigue syndrome. Front. Neurol. 11, (2020).

  • Medina-Perucha, L. et al. Self-reported menstrual alterations during the COVID-19 syndemic in Spain: a cross-sectional study. Int. J. Womens Health 14, 529–544 (2022).

    Article 
    CAS 

    Google Scholar 

  • Ding, T. et al. Analysis of ovarian injury associated with COVID-19 disease in reproductive-aged women in Wuhan, China: an observational study. Front. Med. 8, 635255 (2021).

    Article 

    Google Scholar 

  • Sharp, G. C. et al. The COVID-19 pandemic and the menstrual cycle: research gaps and opportunities. Int. J. Epidemiol. https://doi.org/10.1093/ije/dyab239 (2021).

    Article 

    Google Scholar 

  • Khan, S. M. et al. SARS-CoV-2 infection and subsequent changes in the menstrual cycle among participants in the Arizona CoVHORT study. Am. J. Obstet. Gynecol. 226, 270–273 (2022).

    Article 
    CAS 

    Google Scholar 

  • Harlow, B. L., Signorello, L. B., Hall, J. E., Dailey, C. & Komaroff, A. L. Reproductive correlates of chronic fatigue syndrome. Am. J. Med. 105, 94S–99S (1998).

    Article 
    CAS 

    Google Scholar 

  • Thomas, N., Gurvich, C., Huang, K., Gooley, P. R. & Armstrong, C. W. The underlying sex differences in neuroendocrine adaptations relevant to myalgic encephalomyelitis chronic fatigue syndrome. Front. Neuroendocrinol. 66, 100995 (2022).

    Article 
    CAS 

    Google Scholar 

  • Boneva, R. S., Lin, J.-M. S. & Unger, E. R. Early menopause and other gynecologic risk indicators for chronic fatigue syndrome in women. Menopause 22, 826–834 (2015).

    Article 

    Google Scholar 

  • Kresch, E. et al. COVID-19 endothelial dysfunction can cause erectile dysfunction: histopathological, immunohistochemical, and ultrastructural study of the human penis. World J. Mens Health 39, 466–469 (2021).

    Article 

    Google Scholar 

  • Maleki, B. H. & Tartibian, B. COVID-19 and male reproductive function: a prospective, longitudinal cohort study. Reproduction 161, 319–331 (2021).

    Article 
    CAS 

    Google Scholar 

  • Yu, J. Z. et al. Lung perfusion disturbances in nonhospitalized post-COVID with dyspnea — a magnetic resonance imaging feasibility study. J. Intern. Med. 292, 941–956 (2022).

    Article 

    Google Scholar 

  • Cho, J. L. et al. Quantitative chest CT assessment of small airways disease in post-acute SARS-CoV-2 infection. Radiology 304, 185–192 (2022).

    Article 

    Google Scholar 

  • Vijayakumar, B. et al. Immuno-proteomic profiling reveals aberrant immune cell regulation in the airways of individuals with ongoing post-COVID-19 respiratory disease. Immunity 55, 542–556.e5 (2022).

    Article 
    CAS 

    Google Scholar 

  • Littlefield, K. M. et al. SARS-CoV-2-specific T cells associate with inflammation and reduced lung function in pulmonary post-acute sequalae of SARS-CoV-2. PLOS Pathog. 18, e1010359 (2022).

    Article 
    CAS 

    Google Scholar 

  • Meringer, H. & Mehandru, S. Gastrointestinal post-acute COVID-19 syndrome. Nat. Rev. Gastroenterol. Hepatol. 19, 345–346 (2022).

    Article 
    CAS 

    Google Scholar 

  • König, R. S. et al. The gut microbiome in myalgic encephalomyelitis (ME)/chronic fatigue syndrome (CFS). Front. Immunol. 12, 628741 (2022).

    Article 

    Google Scholar 

  • Zuo, T. et al. Depicting SARS-CoV-2 faecal viral activity in association with gut microbiota composition in patients with COVID-19. Gut 70, 276–284 (2021).

    CAS 

    Google Scholar 

  • Zollner, A. et al. Postacute COVID-19 is characterized by gut viral antigen persistence in inflammatory bowel diseases. Gastroenterology 163, 495–506.e8 (2022).

    Google Scholar 

  • Giron, L. B. et al. Markers of fungal translocation are elevated during post-acute sequelae of SARS-CoV-2 and induce NF-κB signaling. JCI Insight https://doi.org/10.1172/jci.insight.160989 (2022).

  • Jason, L. A. et al. COVID-19 symptoms over time: comparing long-haulers to ME/CFS. Fatigue Biomed. Health Behav. 9, 59–68 (2021).

    Article 
    CAS 

    Google Scholar 

  • Tran, V.-T., Porcher, R., Pane, I. & Ravaud, P. Course of post COVID-19 disease symptoms over time in the ComPaRe long COVID prospective e-cohort. Nat. Commun. 13, 1812 (2022).

    Article 
    CAS 

    Google Scholar 

  • Walker, A., Kelly, C., Pottinger, G. & Hopkins, C. Parosmia — a common consequence of covid-19. BMJ 377, e069860 (2022).

    Article 

    Google Scholar 

  • Jamal, S. M. et al. Prospective evaluation of autonomic dysfunction in post-acute sequela of COVID-19. J. Am. Coll. Cardiol. 79, 2325–2330 (2022).

    Article 

    Google Scholar 

  • Stavileci, B., Özdemir, E., Özdemir, B., Ereren, E. & Cengiz, M. De-novo development of fragmented QRS during a six-month follow-up period in patients with COVID-19 disease and its cardiac effects. J. Electrocardiol. 72, 44–48 (2022).

    Article 

    Google Scholar 

  • Grist, J. T. et al. Lung abnormalities depicted with hyperpolarized 129Xe MRI in patients with long COVID. Radiology 305, 709–717 (2022).

    Article 

    Google Scholar 

  • US ME/CFS Clinician Coalition. Testing Recommendations for Suspected ME/CFS (US ME/CFS Clinician Coalition, 2021).

  • Galán, M. et al. Persistent overactive cytotoxic immune response in a Spanish cohort of individuals with long-COVID: identification of diagnostic biomarkers. Front. Immunol. 13, 848886 (2022).

    Article 

    Google Scholar 

  • Grandjean, D. et al. Screening for SARS-CoV-2 persistence in Long COVID patients using sniffer dogs and scents from axillary sweats samples. Clin. Trials 12, 2 (2022).

    Google Scholar 

  • Pifarré, F. et al. The use of oxygen as a possible screening biomarker for the diagnosis of chronic fatigue. Apunt. Sports Med 57, 100379 (2022).

    Article 

    Google Scholar 

  • Jason, L. A., Kalns, J., Richarte, A., Katz, B. Z. & Torres, C. Saliva fatigue biomarker index as a marker for severe myalgic encephalomyelitis/chronic fatigue syndrome in a community based sample. Fatigue Biomed. Health Behav. 9, 189–195 (2021).

    Article 

    Google Scholar 

  • Esfandyarpour, R., Kashi, A., Nemat-Gorgani, M., Wilhelmy, J. & Davis, R. W. A nanoelectronics-blood-based diagnostic biomarker for myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). Proc. Natl Acad. Sci. USA 116, 10250–10257 (2019).

    Article 
    CAS 

    Google Scholar 

  • Nkiliza, A. et al. Sex-specific plasma lipid profiles of ME/CFS patients and their association with pain, fatigue, and cognitive symptoms. J. Transl Med. 19, 370 (2021).

    Article 
    CAS 

    Google Scholar 

  • Bolton, M. J., Chapman, B. P. & Van Marwijk, H. Low-dose naltrexone as a treatment for chronic fatigue syndrome. BMJ Case Rep. 13, e232502 (2020).

    Article 

    Google Scholar 

  • Pitt, B., Tate, A. M., Gluck, D., Rosenson, R. S. & Goonewardena, S. N. Repurposing low-dose naltrexone (LDN) for the prevention and treatment of immunothrombosis in COVID-19. Eur. Heart J. Cardiovasc. Pharmacother. https://doi.org/10.1093/ehjcvp/pvac014 (2022).

    Article 

    Google Scholar 

  • Alper, K. Case report: famotidine for neuropsychiatric symptoms in COVID-19. Front. Med. 7, 614393 (2020).

    Article 

    Google Scholar 

  • Hohberger, B. et al. Case report: neutralization of autoantibodies targeting G-protein-coupled receptors improves capillary impairment and fatigue symptoms after COVID-19 infection. Front. Med. 8, 754667 (2021).

    Article 

    Google Scholar 

  • Wang, C. et al. Long COVID: the nature of thrombotic sequelae determines the necessity of early anticoagulation. Front. Cell. Infect. Microbiol. 12, 861703 (2022).

    Article 
    CAS 

    Google Scholar 

  • The ME Association. A new treatment for Long Covid? The ME Association https://meassociation.org.uk/2021/10/a-new-treatment-for-long-covid/ (2021).

  • Tölle, M. et al. Myalgic encephalomyelitis/chronic fatigue syndrome: efficacy of repeat immunoadsorption. J. Clin. Med. 9, E2443 (2020).

    Article 

    Google Scholar 

  • Wood, E., Hall, K. H. & Tate, W. Role of mitochondria, oxidative stress and the response to antioxidants in myalgic encephalomyelitis/chronic fatigue syndrome: a possible approach to SARS-CoV-2 ‘long-haulers’? Chronic Dis. Transl Med. 7, 14–26 (2020).

    Google Scholar 

  • NICE. Myalgic encephalomyelitis (or encephalopathy)/chronic fatigue syndrome: diagnosis and management. NICE https://www.nice.org.uk/guidance/NG206 (2021).

  • World Health Organization. Support for Rehabilitation Self-Management After COVID-19 Related Illness (WHO, 2021).

  • CDC. Treatment of ME/CFS | Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). CDC https://www.cdc.gov/me-cfs/treatment/index.html (2021).

  • Long COVID Physio. Exercise. Long COVID Physio https://longcovid.physio/exercise (2022).

  • Geng, L. N., Bonilla, H. F., Shafer, R. W., Miglis, M. G. & Yang, P. C. Case report of breakthrough long COVID and the use of nirmatrelvir-ritonavir. Preprint at https://www.researchsquare.com/article/rs-1443341/v1 (2022).

  • Xie, Y., Choi, T. & Al-Aly, Z. Nirmatrelvir and the risk of post-acute sequelae of COVID-19. Preprint at medRxiv https://doi.org/10.1101/2022.11.03.22281783 (2022).

  • Charfeddine, S. et al. Sulodexide in the treatment of patients with long COVID 19 symptoms and endothelial dysfunction: the results of TUN-EndCOV study. Arch. Cardiovasc. Dis. Suppl. 14, 127 (2022).

    Google Scholar 

  • Thomas, R. et al. A randomised, double-blind, placebo-controlled trial evaluating concentrated phytochemical-rich nutritional capsule in addition to a probiotic capsule on clinical outcomes among individuals with COVID-19 — the UK Phyto-V study. COVID 2, 433–449 (2022).

    Article 
    CAS 

    Google Scholar 

  • Zhang, L. et al. Gut microbiota-derived synbiotic formula (SIM01) as a novel adjuvant therapy for COVID-19: an open-label pilot study. J. Gastroenterol. Hepatol. 37, 823–831 (2022).

    Article 
    CAS 

    Google Scholar 

  • Liu, L. D. & Duricka, D. L. Stellate ganglion block reduces symptoms of Long COVID: a case series. J. Neuroimmunol. 362, 577784 (2022).

    Article 
    CAS 

    Google Scholar 

  • Belcaro, G. et al. Preventive effects of Pycnogenol® on cardiovascular risk factors (including endothelial function) and microcirculation in subjects recovering from coronavirus disease 2019 (COVID-19). Minerva Med. 113, 300–308 (2022).

    Article 

    Google Scholar 

  • Crooks, V., Waller, S., Smith, T. & Hahn, T. J. The use of the Karnofsky Performance Scale in determining outcomes and risk in geriatric outpatients. J. Gerontol. 46, M139–M144 (1991).

    Article 
    CAS 

    Google Scholar 

  • Ledford, H. Long-COVID treatments: why the world is still waiting. Nature 608, 258–260 (2022).

    Article 
    CAS 

    Google Scholar 

  • Toogood, P. L., Clauw, D. J., Phadke, S. & Hoffman, D. Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS): where will the drugs come from? Pharmacol. Res. 165, 105465 (2021).

    Article 
    CAS 

    Google Scholar 

  • US ME/CFS Clinician Coalition. ME/CFS Treatment Recommendations (US ME/CFS Clinician Coalition, 2021).

  • Taquet, M., Dercon, Q. & Harrison, P. J. Six-month sequelae of post-vaccination SARS-CoV-2 infection: a retrospective cohort study of 10,024 breakthrough infections. Brain Behav. Immun. 103, 154–162 (2022).

    Article 
    CAS 

    Google Scholar 

  • Office for National Statistics. Self-reported long COVID after infection with the Omicron variant in the UK: 6 May 2022. Office for National Statistics https://www.ons.gov.uk/peoplepopulationandcommunity/healthandsocialcare/conditionsanddiseases/bulletins/selfreportedlongcovidafterinfectionwiththeomicronvariant/6may2022 (2022).

  • Tsuchida, T. et al. Relationship between changes in symptoms and antibody titers after a single vaccination in patients with Long COVID. J. Med. Virol. 94, 3416–3420 (2022).

    Article 
    CAS 

    Google Scholar 

  • VA COVID-19 Observational Research Collaboratory. Burden of PCR-confirmed SARS-CoV-2 reinfection in the U.S. Veterans Administration, March 2020 – January 2022. Preprint at medRxiv https://doi.org/10.1101/2022.03.20.22272571 (2022).

  • Bowe, B., Xie, Y. & Al-Aly, Z. Acute and postacute sequelae associated with SARS-CoV-2 reinfection. Nat. Med. https://doi.org/10.1038/s41591-022-02051-3 (2022).

  • Blomberg, J., Gottfries, C.-G., Elfaitouri, A., Rizwan, M. & Rosén, A. Infection elicited autoimmunity and myalgic encephalomyelitis/chronic fatigue syndrome: an explanatory model. Front. Immunol. 9, 229 (2018).

    Article 

    Google Scholar 

  • Cauchemez, S. & Bosetti, P. A reconstruction of early cryptic COVID spread. Nature 600, 40–41 (2021).

    Article 
    CAS 

    Google Scholar 

  • CDC. Estimated COVID-19 burden. Centers for Disease Control and Prevention https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/burden.html (2020).

  • Kucirka, L. M., Lauer, S. A., Laeyendecker, O., Boon, D. & Lessler, J. Variation in false-negative rate of reverse transcriptase polymerase chain reaction–based SARS-CoV-2 tests by time since exposure. Ann. Intern. Med. 173, 262–267 (2020).

    Article 

    Google Scholar 

  • Levine-Tiefenbrun, M. et al. SARS-CoV-2 RT-qPCR test detection rates are associated with patient age, sex, and time since diagnosis. J. Mol. Diagn. 24, 112–119 (2022).

    Article 
    CAS 

    Google Scholar 

  • Jarvis, K. F. & Kelley, J. B. Temporal dynamics of viral load and false negative rate influence the levels of testing necessary to combat COVID-19 spread. Sci. Rep. 11, 9221 (2021).

    Article 
    CAS 

    Google Scholar 

  • Dattner, I. et al. The role of children in the spread of COVID-19: using household data from Bnei Brak, Israel, to estimate the relative susceptibility and infectivity of children. PLoS Comput. Biol. 17, e1008559 (2021).

    Article 
    CAS 

    Google Scholar 

  • Langeland, N. & Cox, R. J. Are low SARS-CoV-2 viral loads in infected children missed by RT-PCR testing? Lancet Reg. Health Eur. 5, 100138 (2021).

    Article 

    Google Scholar 

  • Van Elslande, J. et al. Longitudinal follow-up of IgG anti-nucleocapsid antibodies in SARS-CoV-2 infected patients up to eight months after infection. J. Clin. Virol. 136, 104765 (2021).

    Article 

    Google Scholar 

  • Liu, W. et al. Predictors of nonseroconversion after SARS-CoV-2 infection. Emerg. Infect. Dis. 27, 2454–2458 (2021).

    Article 
    CAS 

    Google Scholar 

  • Toh, Z. Q. et al. Comparison of seroconversion in children and adults with mild COVID-19. JAMA Netw. Open 5, e221313 (2022).

    Google Scholar 

  • Peterson, T. M., Peterson, T. W., Emerson, S., Meredyth, A. Evans, E. R. & Jason, L. A. Coverage of CFS within U.S. medical schools. Univers. J. Public Health 1, 177–179 (2013).

    Article 

    Google Scholar 

  • Rowe, P. C. et al. Orthostatic intolerance and chronic fatigue syndrome associated with Ehlers-Danlos syndrome. J. Pediatr. 135, 494–499 (1999).

    Article 
    CAS 

    Google Scholar 

  • Nguyen, T. et al. Novel characterisation of mast cell phenotypes from peripheral blood mononuclear cells in chronic fatigue syndrome/myalgic encephalomyelitis patients. Asian Pac. J. Allergy Immunol. 35, 75–81 (2017).

    CAS 

    Google Scholar 

  • Wagner, C., Isenmann, S., Ringendahl, H. & Haensch, C.-A. Anxiety in patients with postural tachycardia syndrome (POTS). Fortschr. Neurol. Psychiatr. 80, 458–462 (2012).

    CAS 

    Google Scholar 

  • Grayson, D. A., Mackinnon, A., Jorm, A. F., Creasey, H. & Broe, G. A. Item bias in the center for epidemiologic studies depression scale: effects of physical disorders and disability in an elderly community sample. J. Gerontol. Ser. B 55, P273–P282 (2000).

    Article 
    CAS 

    Google Scholar 

  • Twisk, F. N. M. & Maes, M. A review on cognitive behavorial therapy (CBT) and graded exercise therapy (GET) in myalgic encephalomyelitis (ME) / chronic fatigue syndrome (CFS): CBT/GET is not only ineffective and not evidence-based, but also potentially harmful for many patients with ME/CFS. Neuro Endocrinol. Lett. 30, 284–299 (2009).

    Google Scholar 

  • Vink, M. & Vink-Niese, F. Is it useful to question the recovery behaviour of patients with ME/CFS or Long COVID? Healthcare 10, 392 (2022).

    Article 

    Google Scholar 

  • Dysautonomia International. What is dysautonomia? Dysautonomia International http://www.dysautonomiainternational.org/page.php?ID=34 (2022).

  • CDC. Epidemiology | Presentation and clinical course | Healthcare providers | Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS). CDC https://www.cdc.gov/me-cfs/healthcare-providers/presentation-clinical-course/epidemiology.html (2021).

  • Sørensen, A. I. V. et al. A nationwide questionnaire study of post-acute symptoms and health problems after SARS-CoV-2 infection in Denmark. Nat. Commun. 13, 4213 (2022).

    Article 

    Google Scholar 

  • Berg, S. K. et al. Long COVID symptoms in SARS-CoV-2-positive children aged 0–14 years and matched controls in Denmark (LongCOVIDKidsDK): a national, cross-sectional study. Lancet Child Adolesc. Health 6, 614–623 (2022).

    Article 

    Google Scholar 

  • Morrow, A. K. et al. Long-term COVID 19 sequelae in adolescents: the overlap with orthostatic intolerance and ME/CFS. Curr. Pediatr. Rep. 10, 31–44 (2022).

    Article 

    Google Scholar 

  • Cooper, S. et al. Long COVID-19 liver manifestation in children. J. Pediatr. Gastroenterol. Nutr. https://doi.org/10.1097/MPG.0000000000003521 (2022).

    Article 

    Google Scholar 

  • Kompaniyets, L. Post–COVID-19 symptoms and conditions among children and adolescents — United States, March 1, 2020–January 31, 2022. MMWR Morb. Mortal. Wkly Rep. 71, 993–999 (2022).

    Article 

    Google Scholar 

  • Edlow, A. G., Castro, V. M., Shook, L. L., Kaimal, A. J. & Perlis, R. H. Neurodevelopmental outcomes at 1 year in infants of mothers who tested positive for SARS-CoV-2 during pregnancy. JAMA Netw. Open 5, e2215787 (2022).

    Article 

    Google Scholar 

  • Morand, A. et al. Similar patterns of [18F]-FDG brain PET hypometabolism in paediatric and adult patients with long COVID: a paediatric case series. Eur. J. Nucl. Med. Mol. Imaging 49, 913–920 (2022).

    Article 
    CAS 

    Google Scholar 

  • Heiss, R. et al. Pulmonary dysfunction after pediatric COVID-19. Radiology https://doi.org/10.1148/radiol.221250 (2022).

    Article 

    Google Scholar 

  • Read original article here

    Leave a Comment