Tag Archives: tusks

Fred the Mastodon’s Tusks Reveal a Life of Fighting and Roaming

Over 13,000 years ago, an American mastodon roamed what is today the American Midwest. Year after year, he returned to an area in northeast Indiana — believed to be a mating ground. It was there that he died in battle.

Where the mastodon spent his life and how he died were all recovered by studying chemical signatures recorded in his tusk, scientists reported Monday in the Proceedings of the National Academy of Sciences. Their techniques offer new insight into one of several ancient elephant relatives that roamed North America before going extinct.

Scientists studied the Buesching mastodon, named for the family farm where it was found in 1998, and now on display at the Indiana State Museum. Also known as Fred, his tusks, like those of modern elephants, record an animal’s entire life history and enable scientists to glean information from specific days, weeks or years. Thus, the scientists could specifically sample areas within its tusk from its adolescence and adulthood and determine how its migration changed over time.

This migratory detective work focused on strontium and oxygen isotopes in the tusks. Joshua Miller, a paleoecologist from the University of Cincinnati and an author of the study, described strontium isotopes as leaving signals all over the landscape.

Strontium isotopes leach from rocks into surrounding soil and water. As plants absorb those nutrients, they incorporate “those isotopic signatures,” he explained. Our hungry mastodon would come along and eat those plants, stamping that geographic fingerprint into his tusks.

Interpreting these geographical references and matching them onto the landscape takes one more step: a map of how strontium isotopes change across terrain. The authors built upon the work of other scientists, including Brooke E. Crowley, also of Cincinnati and one of the study’s co-authors, who had created such a map.

Oxygen isotopes helped to uncover the seasons in which Fred migrated. Each time it rained, atmospheric isotopes recording the season were incorporated into local bodies of water and ingested when he drank from nearby ponds and streams.

Together with complex statistical modeling, the team was able to determine the movement of this animal.

Things drastically changed for this mastodon from his 29th through his 32nd years. Suddenly, he was moving over great distances with signs of repeated injury. But he kept returning to northeast Indiana every year — a location, the authors noted, that he never explored in his adolescent years. There, in late spring and early summer, he suffered injuries, an important clue that it might have been a mating ground.

Daniel Fisher, a paleontologist at the University of Michigan and also an author of the study, explained that pits on the surface of a mastodon’s tusk are just one trace injuries leave behind. Those injuries leave an internal mark as well.

“It turns out that those pits form in places where the tusk, at some point in its growth history, was jammed into the back of its bony socket,” Dr. Fisher said. When male proboscideans thrust their tusks at opponents, the tusk jams back into the socket where it grows out of the skull. This affects internal growth within the tusk, leaving signs of which season the injury occurred in.

That these injuries consistently reoccurred in spring and summer within an adult male mastodon led the team to suspect he was going through musth, a time of aggression associated with reproduction seen in modern male elephants, where sparring with other males is a frequent occurrence.

The mortal craniofacial injury he sustained took place during that same season at that same mating ground.

“The methods that they’re using are part of a broader trend in Quaternary vertebrate paleontology to add a lot more detail to the behavior and the ecology of these animals,” said Chris Widga, a vertebrate paleontologist and head curator at the Gray Fossil Site in Tennessee, who was not involved in the research. “And it’s the first time that we have had this data, which is really, really good.”

Whether the migration patterns and injuries are representative of all male American mastodons is a question for future research. The team hopes to study more male and female mastodon fossils.

For now, the study opens the door to more questions: How did the migration patterns of female mastodons differ? Were there separate mating grounds for the various proboscideans that coexisted at that time? Or, Dr. Miller pondered, “Did they go to the same place, and this is just a crazed region of hormonally-charged proboscideans?”

Whatever the broader possibilities about mastodons as a species, Dr. Miller returned to the team’s discoveries about the Buesching specimen.

“To be at a point in geochemistry, modeling and paleobiology in general that we can start to grasp at some of these foundational aspects of the biology of an individual,” he said, “I think it’s just so deeply, deeply exciting.”

Read original article here

How Did Elephants and Walruses Get Their Tusks? It’s a Long Story.

Elephants have them. Pigs have them. Narwhals and water deer have them. Tusks are among the most dramatic examples of mammal dentition: ever-growing, projecting teeth used for fighting, foraging, even flirting.

So why, across the broad sweep of geologic history, do such useful teeth only appear among mammals and no other surviving groups of animals? According to a study published Wednesday in the journal Proceedings of the Royal Society B, it takes two key adaptations to teeth to make a tusk — and the evolutionary pathway first appeared millions of years before the first true mammals.

Around 255 million years ago, a family of mammal relatives called dicynodonts — tusked, turtle-beaked herbivores ranging in stature from gopher-size burrowers to six-ton behemoths — wandered the forests of the supercontinent Pangea. A few lineages survived the devastating Permian extinction period, during which more than 90 percent of Earth’s species died out, before being replaced by herbivorous dinosaurs.

“They were really successful animals,” said Megan Whitney, a paleontologist at Harvard University and the lead author of the study. “They’re so abundant in South Africa that in some of these sites, you just get really sick of seeing them. You’ll look out over a field and there’ll just be skulls of these animals everywhere.”

To work out how these animals evolved their tusks, Dr. Whitney and her colleagues collected bone samples from 10 dicynodont species, among them the tiny, big-eyed Diictodon and the tank-like Lystrosaurus. They looked at how their canines attached to the jaw, whether they regularly regenerated lost teeth, like many reptiles do, and for indicators that their teeth grew continuously.

Many mammal families have evolved long, saber-toothed fangs or ever-growing incisors for gnawing. Several early dicynodonts also had a pair of long canine teeth poking from their beaks. But these teeth, like most animal teeth, are composed of a substance called dentine, capped by a hard, thin covering of enamel. Tusks have no enamel, Dr. Whitney said, and grow continuously even as the comparatively softer dentine gets worn away.

Examining the dicynodont skulls, the team found that a shift occurred midway through the group’s evolution: the appearance of soft tissue attachments supporting the teeth, akin to the ligaments present in modern mammals. And like modern mammals, dicynodonts didn’t continuously replace their teeth.

Both of these shifts laid the groundwork for the development of an ever-growing, well-supported tooth — a tusk. Afterward, Dr. Whitney said, late dicynodonts developed tusks in at least two different lineages, and possibly more.

This evolutionary pathway is reminiscent of another group of tusked animals: elephants. Early elephant relatives had enlarged canines that were covered with enamel, Dr. Whitney said. Later members of the family reduced the enamel to a thin band on one side of the tooth, like a rodent incisor, allowing the tooth to grow continuously. Finally, they ditched the enamel entirely.

“You’re providing the means for a tusk to evolve if you unlock the evolution of reduced tooth replacement and soft tissue attachments,” Dr. Whitney said. “Once you have a group that has both conditions, you can go a long time of animals playing with different tooth combinations, and you start to see these independent developments of tusks.”

The reason that tusks are currently limited to modern mammals, then, lies in a specific arrangement of teeth that mammals inherited from the broader family of synapsids, the group that includes mammal forerunners like dicynodonts.

Even with those prerequisites, Dr. Whitney said, an adaptation like tusks isn’t inevitable. But it is available, and multiple mammal groups — elephants, whales, deer, pigs and walruses — have found uses for them.

“Mammals are kind of stuck with our teeth, unlike something like a shark, which has a conveyor belt of terror,” Dr. Whitney said. “So an ever-growing tooth is pretty brilliant if you’re only replacing your tooth once.”

Read original article here

Why do only mammals have tusks? Study shines some light on their surprising origins

But no birds, fish or reptiles today sport this extreme and ever-growing bit of anatomy. Only mammals do, even though they weren’t the first tusked creatures. It is an ancient trait that predates dinosaurs, a new study has found.

“We were able to show that the first tusks belonged to animals that came before modern mammals, called dicynodonts,” said Ken Angielczyk, a curator at Chicago’s Field Museum and an author of the new study, in a news release. “They’re very weird animals.”

Ranging from the size of a rat to elephantine, the dicynodonts lived from about 270 million to 201 million years ago. While their closest living relatives are mammals, they looked more reptilian, with turtle-shaped heads.

Dicynodonts were the most abundant and diverse vertebrates before the rise of the dinosaurs, and they all had a pair of tusks protruding from their upper jaws.

Tusks versus teeth

Before digging into how exactly tusks evolved, the researchers had to define exactly what a tusk is and how it differs from a tooth — something that had been ambiguous.

They determined that a tusk must extend from the mouth, consist solely of a substance called dentine and continue to grow throughout an animal’s life — even if it gets damaged. Teeth are also made from dentine. However, they are coated in enamel. This, along with their shape, makes them durable, but once adult teeth grow in, there’s not much that can be done if they do break. They don’t regrow.

“Enamel-coated teeth are a different evolutionary strategy than dentine-coated tusks — it’s a trade-off,” said Megan Whitney, postdoctoral fellow at Harvard University’s department of organismic and evolutionary biology. She was the lead author of the study.

The researchers then analyzed thin sections of 19 fossilized tusks of dicynodonts, representing 10 different species found in South Africa, Antarctica, Zambia and Tanzania. They also used micro-computerized tomography scans to examine how the fossils were attached to the skull, and whether their roots showed evidence of continuous growth. They found that while a few of the dicynodonts studied had true tusks, with no enamel, the rest had big teeth.

The scientists also found there wasn’t a strict progression from non-tusks to tusks. Different members of the dicynodont family evolved tusks independently at different times, and some never evolved true tusks.

“I fully expected there to be a single moment in dicynodont evolutionary history where tusks evolved because that’s the simplest explanation. However, we found convergent evolution of tusks later in dicynodont evolution,” Whitney said. Convergent evolution is when similar features evolve independently in different species or different periods in time.

For tusks to evolve, they found that a flexible ligament attaching the tooth to the jaw was needed, as well as reduced rates of teeth replacement — a combination of features that today is uniquely found in modern mammals.

“It all ladders up to giving us a better understanding of the tusks we see in mammals today,” said Angielczyk, speaking of the research, which published in the journal Proceedings of the Royal Society B Biological Sciences.

Read original article here

Fossil dental exams reveal how tusks first evolved

Life reconstruction of the the dicynodont Dicynodon. Aside from the tusks in the upper jaw, most dicynodonts possessed a turtle-like beak that they used to chew their food. Image by Marlene Hill Donnelly. Credit: Marlene Hill Donnelly

A wide variety of animals have tusks, from elephants and walruses to five-pound, guinea pig-looking critters called hyraxes. But one thing tusked animals have in common is that they’re all mammals—there are no known fish, reptiles, or birds with tusks. In a new study in Proceedings of the Royal Society B, paleontologists traced the first tusks back to ancient mammal relatives that lived before the dinosaurs, and to do so, they had to define what makes a tusk a tusk in the first place.

“Tusks are this very famous anatomy, but until I started working on this study, I never really thought about how tusks are restricted to mammals,” says Megan Whitney, a researcher at Harvard University and the lead author of the study.

“We were able to show that the first tusks belonged to animals that came before modern mammals, called dicynodonts,” says Ken Angielczyk, a curator at Chicago’s Field Museum and an author of the paper. “They’re very weird animals.”

The dicynodonts mostly lived before the time of the dinosaurs, from about 270 to 201 million years ago, and they ranged from rat-sized to elephant-sized. Modern mammals are their closest living relatives, but they looked more reptilian, with turtle-like beaks. And since their discovery 176 years ago, one of their defining features has been the pair of protruding tusks in their upper jaws. The name dicynodont even means “two canine teeth.”

The researchers got the idea to study the origin of tusks while taking a lunch break on a paleontological dig. “We were sitting in the field in Zambia, and there were dicynodont teeth everywhere,” recalls Whitney. “I remember Ken picking them up and asking how come they were called tusks, because they had features that tusks don’t have.”

Angielczyk had hit upon a crucial distinction: not all protruding teeth are technically tusks, and the teeth’s makeup and growth patterns tell us whether they count. “For this paper, we had to define a tusk, because it’s a surprisingly ambiguous term,” says Whitney. The researchers decided that for a tooth to be a tusk, it has to extend out past the mouth, it has to keep growing throughout the animal’s life, and unlike most mammals’ teeth (including ours), tusks’ surfaces are made of dentine rather than hard enamel.

Left side of the skull of the dicynodont Dolichuranus (NMT RB554) from Tanzania. The large tusk is visible at the lower left of the specimen. Photo by K. Angielczyk. Credit: Ken Angielczyk

Under these parameters, elephants, walruses, warthogs, and hyraxes all have tusks. Other big teeth in the animal kingdom don’t make the cut, though. For instance, rodent teeth, even though they sometimes stick out and are ever-growing, have an enamel band on the front of the tooth, so they don’t count.

Some of the dicynodont tusks that the team observed in Zambia didn’t seem to fit the definition of a tusk either— they were coated in enamel instead of dentine.

A dicynodont skull still in the ground that is broken to reveal the roots of their tusks/teeth (the white circular structures). Credit: K. Angielczyk

The different makeup of teeth versus tusks also gives scientists insights into an animal’s life. “Enamel-coated teeth are a different evolutionary strategy than dentine-coated tusks, it’s a trade-off,” says Whitney. Enamel teeth are tougher than dentine, but because of the geometry of how teeth grow in the jaw, if you want teeth that keep growing throughout your life, you can’t have a complete enamel covering.

Animals like humans made an evolutionary investment in durable but hard-to-fix teeth— once our adult teeth grow in, we’re out of luck if they get broken. Tusks are less durable than our enamel-coated teeth, but they grow continuously, even if they get damaged. It’s like the compromise of getting a car that’s very reliable but very difficult to get repaired when it does have trouble, versus driving a beater that needs frequent repairs but is a model that’s cheap and easy for any mechanic to fix.

The enlarged caniniforms of Diictodon have enamel making them more like teeth than tusks. The cross section reveals a ring of enamel around the outside of the tusk that is illuminated under polarized light. Credit: M. Whitney

The different kinds of teeth animals have evolved can tell scientists about the pressures those animals faced that could have produced those teeth. Animals with tusks might use them for fighting or for rooting in the ground, exposing them to little injuries that would be risky for enamel teeth that don’t grow continuously.

To study whether dicynodonts tusks really were tusks, the researchers cut paper-thin slices out of the fossilized teeth of 19 dicynodont specimens, representing ten different species, and examined their structure with a microscope. They also used micro-CT scans to examine how the teeth were attached to the skull, and whether their roots showed evidence of continuous growth. The scientists found that some dicynodont teeth are indeed tusks, while others, particularly those of some of the earlier species, were just large teeth. It wasn’t a strict progression from non-tusks to tusks, though— different members of the dicynodont family evolved tusks independently.

Isolated tusk fragments found in Zambia by field teams in 2018. Photo by K. Angielczyk. Credit: Ken Angielczyk

Whitney says she was surprised by the finding. “I kind of expected there to be one point in the family tree where all the dicynodonts started having tusks, so I thought it was pretty shocking that we actually see tusks evolve convergently,” she says.

“Dicynodont tusks can tell us a lot about mammalian tusk evolution in general,” says Angielczyk. “For instance, this study shows that reduced rates of tooth replacement and a flexible ligament attaching the tooth to the jaw are needed for true tusks to evolve. It all ladders up to giving us a better understanding of the tusks we see in mammals today.”

An example of an ever-growing, true tusk in the dicynodont Lystrosaurus. When researchers cut into the face of Lystrosaurus, the root of the tusks is composed of a wide open pulp cavity that suggests dentine was continuously being deposited. Credit: M. Whitney

“Dicynodonts were the most abundant and diverse vertebrates on land just before dinosaur times, and they’re famous for their ‘tusks.’ The fact that in reality only a few have true tusks, and the rest have big teeth, is a beautiful example of evolution we can document. We can see how to build a tusk!” says Brandon Peecook, a curator at the Idaho Museum of Natural History and one of the paper’s authors.

The researchers say that the study, which shows the earliest known instance of true tusks, could help scientists better understand how evolution works.

Cross-section through a dicynodont canine under cross-polarized light. The dentine core of the tooth is in grey and the capping enamel is shown in blue/purple. This enamel covering suggests that this caniniform tooth is more like a regular tooth than a true ever-growing tusk. Credit: M. Whiteny

“Tusks have evolved a number of times, which makes you wonder how—and why? We now have good data on the anatomical changes that needed to happen for dicynodonts to evolve tusks. For other groups, like warthogs or walruses, the jury is still out,” says Christian Sidor, a curator at the University of Washington Burke Museum and one of the paper’s authors.

“Despite being extremely weird animals, there are some things about dicynodonts, like the evolution of tusks, that inform us about the mammals around us today,” says Angielczyk. “Plus, anytime you can say mammals aren’t that special, dicynodonts did it first, that’s a good day.”


Thailand seizes large elephant tusks worth over $450,000


More information:
The evolution of the synapsid tusk: insights from dicynodont therapsid tusk histology, Proceedings of the Royal Society B: Biological Sciences (2021). DOI: 10.1098/rspb.2021.1670. rspb.royalsocietypublishing.or … .1098/rspb.2021.1670

Citation:
Fossil dental exams reveal how tusks first evolved (2021, October 26)
retrieved 27 October 2021
from https://phys.org/news/2021-10-fossil-dental-exams-reveal-tusks.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.



Read original article here