Tag Archives: superworms

Scientists Found Superworms That Love Eating Styrofoam, And It Could Be a Good Thing

Packing material, disposable cutlery, CD cases: Polystyrene is among the most common forms of plastic, but recycling it isn’t easy and the vast majority ends up in landfills or finds its way to the oceans where it threatens marine life.

 

Scientists at Australia’s University of Queensland have now discovered that superworms – the larvae of Zophobas morio darkling beetles – are eager to dine on the substance, and their gut enzymes could hold the key to higher recycling rates.

Chris Rinke, who led a study that was published in the journal Microbial Genomics on Thursday, told AFP previous reports had shown that tiny waxworms and mealworms (which are also beetle larvae) had a good track record when it came to eating plastic, “so we hypothesized that the much larger superworms can eat even more.”

Superworms grow up to two inches (five centimeters) and are bred as a food source for reptiles and birds, or even for humans in countries such as Thailand and Mexico.

Rinke and his team fed superworms different diets over a three week period, with some given polystyrene foam, commonly known as styrofoam, some bran, and others not fed at all.

“We confirmed that superworms can survive on a sole polystyrene diet, and even gain a small amount of weight – compared to a starvation control group – which suggests that the worms can gain energy from eating polystyrene,” he said.

Polystyrene in the gut of a worm. (University of Queensland)

Although the polystyrene-reared superworms completed their life cycle, becoming pupae and then fully developed adult beetles, tests revealed a loss of microbial diversity in their guts and potential pathogens.

These findings suggested that while the bugs can survive on polystyrene, it is not a nutritious diet and impacts their health.

Next, the team used a technique called metagenomics to analyze the microbial gut community and find which gene-encoded enzymes were involved in degrading the plastic.

Bio-upcycling

One way to put the findings to use would be to provide superworms with food waste or agricultural bioproducts to consume alongside polystyrene.

“This could be a way to improve the health of the worms and to deal with the large amount of food waste in Western countries,” said Rinke.

 

But while breeding more worms for this purpose is possible, he envisages another route: creating recycling plants that mimic what the larvae do, which is to first shred the plastic in their mouths then digest it through bacterial enzymes.

“Ultimately, we want to take the superworms out of the equation,” he said, and he now plans more research aimed at finding the most efficient enzymes, then enhancing them further through enzyme engineering.

The breakdown products from that reaction could then be fed to other microbes to create high-value compounds, such as bioplastics, in what he hopes would become an economically viable “upcycling” approach.

© Agence France-Presse

 

Read original article here

Styrofoam-munching superworms could hold key to plastic upcycling

Scientists at Australia’s University of Queensland have now discovered Zophobas morio darkling beetles — whose larvae are known as ‘superworms’ — are eager to dine on stryofoam, and their gut enzymes could hold the key to higher recycling rates.

Packing material, disposable cutlery, CD cases: Polystyrene is among the most common forms of plastic, but recycling it isn’t easy and the vast majority ends up in landfills or finds its way to the oceans where it threatens marine life.

Scientists at Australia’s University of Queensland have now discovered that superworms—the larvae of Zophobas morio darkling beetles—are eager to dine on the substance, and their gut enzymes could hold the key to higher recycling rates.

Chris Rinke, who led a study that was published in the journal Microbial Genomics on Thursday, told AFP previous reports had shown that tiny waxworms and mealworms (which are also beetle larvae) had a good track record when it came to eating plastic, “so we hypothesized that the much larger superworms can eat even more.”

Superworms grow up to two inches (five centimeters) and are bred as a food source for reptiles and birds, or even for humans in countries such as Thailand and Mexico.

Rinke and his team fed superworms different diets over a three week period, with some given polystyrene foam, commonly known as styrofoam, some bran, and others not fed at all.

“We confirmed that superworms can survive on a sole polystyrene diet, and even gain a small amount of weight—compared to a starvation control group—which suggests that the worms can gain energy from eating polystyrene,” he said.

Although the polystyrene-reared superworms completed their life cycle, becoming pupae and then fully developed adult beetles, tests revealed a loss of microbial diversity in their guts and potential pathogens.

These findings suggested that while the bugs can survive on polystyrene, it is not a nutritious diet and impacts their health.

Next, the team used a technique called metagenomics to analyze the microbial gut community and find which gene-encoded enzymes were involved in degrading the plastic.

This handout from from the University of Queensland received on June 9, 2022 shows a Zophobas morio ‘superworm’

Bio-upcycling

One way to put the findings to use would be to provide superworms with food waste or agricultural bioproducts to consume alongside polystyrene.

“This could be a way to improve the health of the worms and to deal with the large amount of food waste in Western countries,” said Rinke.

But while breeding more worms for this purpose is possible, he envisages another route: creating recycling plants that mimic what the larvae do, which is to first shred the plastic in their mouths then digest it through bacterial enzymes.

“Ultimately, we want to take the superworms out of the equation,” he said, and he now plans more research aimed at finding the most efficient enzymes, then enhancing them further through enzyme engineering.

The breakdown products from that reaction could then be fed to other microbes to create high-value compounds, such as bioplastics, in what he hopes would become an economically viable “upcycling” approach.


Superworms digest plastic, with help from their bacterial sidekicks


More information:
Jiarui Sun et al, Insights into plastic biodegradation: community composition and functional capabilities of the superworm (Zophobas morio) microbiome in styrofoam feeding trials, Microbial Genomics (2022). DOI: 10.1099/mgen.0.000842

© 2022 AFP

Citation:
Styrofoam-munching superworms could hold key to plastic upcycling (2022, June 9)
retrieved 10 June 2022
from https://phys.org/news/2022-06-superworms-capable-munching-plastic.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.



Read original article here

Scientists Discover ‘Superworms’ Eat Plastic, Can Help Tackle Pollution Crisis

Image: The University of Queensland

ABSTRACT breaks down mind-bending scientific research, future tech, new discoveries, and major breakthroughs.

Plastic waste is so ubiquitous that particles of it have been detected in the air we breathe, the food we eat, and even our blood. Human consumption and disposal of plastic products has also polluted habitats across the planet, including practically every corner of the oceans, which is especially pernicious because plastics can take centuries of even millennia to biodegrade. 

Given that plastic pollution is expected to increase in the coming decades, there is a dire need to develop sustainable recycling and upcycling processes for this waste, which includes the common material polystyrene that is used to make Styrofoam. Enter: superworms.

Now, scientists have demonstrated that the larvae of the darkling beetle species Zophobas morio, known as “superworms,” can “survive on polystyrene feed” thanks to microbes in their guts, a finding that “will provide a base for future investigations into microbial upcycling of plastic waste,”  according to a study published on Thursday in Microbial Genomics

“Insect larvae actually have a good track record of damaging and eating plastics,” said Chris Rinke, a senior lecturer at the Australian Center for Ecogenomics (ACE) at the University of Queensland and senior author of the study, in an email. “Initial studies, by other authors, have reported that waxworms and common mealworms can eat plastic, so we thought if these rather small larvae can do it, then the large superworms (up to 5.5 cm) might be even more efficient in munching plastic.” 

“It turned out that superworms have a great appetite for polystyrene,” he added. “So, we didn’t know if superworms could survive on plastic when we started our experiments, but we had high hopes.”

To reach this conclusion, Rinke and his colleagues divided 171 superworms into three groups with different diets: One ate only polystyrene, another ate bran, and a third was put on a strict fast. In a macabre twist, the team notes that instances of cannibalism among the fasting superworms “led to our modified experimental design housing the starving control group animals in isolation, whereas animals in the other two groups were housed together during the feeding trial,” according to the study.

In addition to observing the worms throughout the trial, the team also used gene sequencing to identify many of the genetic pathways associated with plastic-eating powers. As a result, the experiment provided “the first metagenomic analysis of a plastic-associated insect microbiome,” according to the study.

Superworms are hardy creatures, and over 95 percent of each group survived their respective three-week diets. The bran-fed worms gained the most weight, but the larvae on the polystyrene diet also got marginally heavier and displayed more activity compared to the starved worms, suggesting that they were able to derive nutrition from the plastic waste—though it came at a cost to their health.

“The superworms reared on polystyrene gained only a small amount of weight and the diversity of their gut microbiomes decreased, both signs that polystyrene is, as expected, a rather poor diet,” Rinke said. “We also found evidence of potential pathogenic bacteria, indicating that the polystyrene diet has negative impacts on the worm’s health. Providing food waste or agricultural bioproducts with the polystyrene could be a way to improve the health of the worms.”

While superworms may play a role in mitigating plastic waste, Rinke noted the real focus is on the larvae’s gut microbes, because their digestive secrets could be artificially mimicked and harnessed on large scales for use in bioreactors and other plastic-processing facilities.

“We have now a catalogue of all the bacterial enzymes encoded in the superworm gut, and plan to further investigate the enzymes with polystyrene degrading capabilities,” Rinke said. “We will characterize them in more detail over the next years to find the most efficient enzymes, which can then be even further improved with enzyme engineering.” 

“Ultimately, we want to take the superworms out of the equation, and mechanically shred the plastic waste, followed by microbial degradation in bioreactors, and subsequent microbial production of higher value compounds such as bioplastic,” he concluded. “This upcycling approach will make plastic recycling more economically feasible and should incentivise plastic recycling.”

Read original article here