Tag Archives: Supernova

How the Supernova massacre unfolded, according to analysis of eyewitness and terrorist video – NBC News

  1. How the Supernova massacre unfolded, according to analysis of eyewitness and terrorist video NBC News
  2. Reports of 260 Israeli music fest deaths aren’t unsubstantiated. Photos and videos document the toll Poynter
  3. Car trouble at Israeli music festival may have saved his life FOX 5 New York
  4. Hamas used ‘precision with no mercy’ during festival attack in Israel, survivors say NBC News
  5. Natalie Sanandaji of Long Island describes escaping Israeli dance festival during Hamas attack: “We heard the first gunshots” CBS New York
  6. View Full Coverage on Google News

Read original article here

Rare ‘warped’ supernova revealed through space-time phenomenon predicted by Einstein – Livescience.com

  1. Rare ‘warped’ supernova revealed through space-time phenomenon predicted by Einstein Livescience.com
  2. Astronomers capture rare “bizarre” star explosion that could help uncover “the mysteries of the universe” CBS News
  3. Einstein’s Theory in Action: Supernova Explosion Revealed by Rare “Cosmic Magnifying Glasses” SciTechDaily
  4. A tiny galaxy brightening up a distant supernova Nature.com
  5. Seeing quadruple: Rare gravitational lensing warps light from explosion of distant dying star : Big Island Now Big Island Now
  6. View Full Coverage on Google News

Read original article here

Rare ‘warped’ supernova revealed through space-time phenomenon predicted by Einstein – Yahoo Life

  1. Rare ‘warped’ supernova revealed through space-time phenomenon predicted by Einstein Yahoo Life
  2. Astronomers capture rare “bizarre” star explosion that could help uncover “the mysteries of the universe” CBS News
  3. Einstein’s Theory in Action: Supernova Explosion Revealed by Rare “Cosmic Magnifying Glasses” SciTechDaily
  4. A tiny galaxy brightening up a distant supernova Nature.com
  5. Seeing quadruple: Rare gravitational lensing warps light from explosion of distant dying star : Big Island Now Big Island Now
  6. View Full Coverage on Google News

Read original article here

Einstein’s Theory in Action: Supernova Explosion Revealed by Rare “Cosmic Magnifying Glasses” – SciTechDaily

  1. Einstein’s Theory in Action: Supernova Explosion Revealed by Rare “Cosmic Magnifying Glasses” SciTechDaily
  2. Astronomers capture rare “bizarre” star explosion that could help uncover “the mysteries of the universe” CBS News
  3. A tiny galaxy brightening up a distant supernova Nature.com
  4. Seeing quadruple: Rare gravitational lensing warps light from explosion of distant dying star : Big Island Now Big Island Now
  5. ‘Cosmic magnifying glass’ reveals super-rare warped supernova with gravitational lens. (Thanks, Einstein!) Space.com
  6. View Full Coverage on Google News

Read original article here

Astronomers Find Rare Star System That Will Trigger a Kilonova

An artist’s rendition of the binary stay system, called CPD-29 2176.
Illustration: Noir Lab

The universe has no shortage of oddities, and researchers at the National Science Foundation’s NOIRLab have observed another one in the form of a particular binary star system. The system, called CPD-29 2176, will eventually trigger a kilonova, a celestial event in which two neutron stars collide in a massive explosion that forms heavy elements, including gold and platinum.

CPD-29 2176 is located around 11,400 light-years from Earth and was found by researchers using NASA’s Neil Gehrels Swift Observatory. Astronomers then conducted more observations at NOIRLab’s Cerro Tololo Inter-American Observatory in Chile. CPD-29 2176 is home to one neutron star and one massive star that is in the process of going supernova, only to become a second neutron star in the future. Eventually, the two neutron stars will collide, producing a kilonova, an explosion that is thought to produce bursts of gamma rays and large amounts of gold and platinum. The paper documenting the research team’s find is published today in Nature.

“We know that the Milky Way contains at least 100 billion stars and likely hundreds of billions more. This remarkable binary system is essentially a one-in-ten-billion system,” said André-Nicolas Chené in a NOIRLab press release. Chené is a NOIRLab astronomer and an author on the study. “Prior to our study, the estimate was that only one or two such systems should exist in a spiral galaxy like the Milky Way.”

While many stars implode was a powerful supernova when they die, the dying star in CPD-29 2176 is becoming an ultra-stripped supernova. An ultra-stripped supernova lacks the vast amount of force that a typical supernova has, since the dying star has had much of its mass stripped by its companion. The researchers think that the neutron star in the system was also formed with an ultra-stripped supernova and argue that this is the reason that CPD-29 2176 is able to remain as a binary—a typical supernova would have enough power to kick a companion star out of its orbit.

“The current neutron star would have to form without ejecting its companion from the system. An ultra-stripped supernova is the best explanation for why these companion stars are in such a tight orbit,” said lead author Noel D. Richardson, a physics and astronomy professor at Embry-Riddle Aeronautical University, in the NOIRLab release. “To one day create a kilonova, the other star would also need to explode as an ultra-stripped supernova so the two neutron stars could eventually collide and merge.”

It will take around one million years for the star undergoing ultra-stripped supernova to turn into a neutron star. It is then when the two stars will begin to spiral into each other, eventually resulting in the metal-producing kilonova, according to the research. In these dramatic cosmic endings, we can look forward to the creation of the same elements that make life possible.  

More: Watch Four Planets Spin Around a Star 130 Million Light-Years Away

Read original article here

Lackluster supernova reveals a rare pair of stars in the Milky Way

Sign up for CNN’s Wonder Theory science newsletter. Explore the universe with news on fascinating discoveries, scientific advancements and more.



CNN
 — 

An unusual star system created more of a fizz and less of a bang when it exploded in a supernova.

The lackluster explosion, known as an “ultra-stripped” supernova, led researchers to discover the two stars 11,000 light-years away from Earth.

It’s the first confirmed detection of a star system that will one day create a kilonova – when neutron stars collide and explode, releasing gold and other heavy elements into space. The rare stellar pair is believed to be one of only about 10 like it in the Milky Way galaxy.

The discovery was a long time coming.

In 2016, NASA’s Neil Gehrels Swift Observatory detected a large flash of X-ray light, which originated from the same region in the sky where a hot, bright Be-type star was located.

Astronomers were curious if the two could potentially be linked, so data was captured using the Cerro Tololo Inter-American Observatory’s 1.5-meter telescope in northern Chile.

One of those interested in using this data to learn more about the star was Dr. Noel D. Richardson, now an assistant professor of physics and astronomy at Embry-Riddle Aeronautical University.

In 2019, Clarissa Pavao, an undergraduate student at the university, approached Richardson while taking his astronomy class to ask if he had any projects she could work on to gain experience with astronomy research. He shared the telescope data with her and throughout the pandemic, Pavao learned how to work with the data from the telescope in Chile and clean it up to reduce distortion.

“The telescope looks at a star and it takes in all the light so that you can see the elements that make up this star — but Be stars tend to have disks of matter around them,” Pavao said. “It’s hard to see directly through all that stuff.”

She sent her initial results — which resembled something like a scatterplot — to Richardson, who recognized that she had pinned down an orbit for the double-star system. Follow-up observations helped them verify the orbit of the binary star system, named CPD-29 2176.

But that orbit wasn’t what they were expecting. Typically, binary stars whirl around one another in an oval-shaped orbit. In CPD-29 2176, one star orbits the other in a circular pattern that repeats about every 60 days.

The two stars, a larger one and a smaller one, were whirling around one another in a very close orbit. Over time, the larger star had begun to shed its hydrogen, releasing material onto the smaller star, which grow from 8 or 9 times the mass of our sun to 18 or 19 times the mass of our sun, Richardson said. For comparison’s sake, our sun’s mass is 333,000 times that of Earth.

The main star became smaller and smaller while building up the secondary star — and by the time it had exhausted all of its fuel, there wasn’t enough to create a massive, energetic supernova to release its remaining material into space.

Instead, the explosion was like lighting a dud firework.

“The star was so depleted that the explosion didn’t even have enough energy to kick (its) orbit into the more typical elliptical shape seen in similar binaries,” Richardson said.

What remained after the ultra-stripped supernova was a dense remnant known as a neutron star, which now orbits the rapidly rotating massive star. The stellar pair will remain in a stable configuration for about 5 to 7 million years. Because both mass and angular momentum were transferred to the Be star, it releases a disk of gas to maintain balance and make sure it doesn’t rip itself apart.

Eventually, the secondary star will also burn through its fuel, expand and release material like the first one did. But that material can’t be easily piled up on the neutron star, so instead, the star system will release the material through space. The secondary star will likely experience a similar lackluster supernova and turn into a neutron star.

Over time — that is, likely a couple billion years — the two neutron stars will merge and eventually explode in a kilonova, releasing heavy elements like gold into the universe.

“Those heavy elements allow us to live the way that we do. For example, most gold was created by stars similar to the supernova relic or neutron star in the binary system that we studied. Astronomy deepens our understanding of the world and our place in it,” Richardson said.

“When we look at these objects, we’re looking backward through time,” Pavao said. “We get to know more about the origins of the universe, which will tell us where our solar system is headed. As humans, we started out with the same elements as these stars.”

A study detailing their findings published Wednesday in the journal Nature.

Richardson and Pavao also worked with physicist Jan J. Eldridge at the University of Auckland in New Zealand, an expert on binary star systems and their evolution. Eldridge reviewed thousands of binary star models and estimated there are likely only 10 in the entirety of the Milky Way galaxy similar to the one in their study.

Next, the researchers want to work on learning more about the Be star itself, and hope to conduct follow-up observations using the Hubble Space Telescope. Pavao is also setting her sights on graduating — and continuing to work on space physics research using the new skills she has acquired.

“I never thought I would be working on the evolutionary history of binary star systems and supernovas,” Pavao said. “It’s been an amazing project.”

Read original article here

Weird supernova remnant blows scientists’ minds

When dying stars explode as supernovae, they usually eject a chaotic web of dust and gas. But a new image of a supernova’s remains looks completely different — as though its central star sparked a cosmic fireworks display. It is the most unusual remnant that researchers have ever found, and could point to a rare type of supernova that astronomers have long struggled to explain.

“I have worked on supernova remnants for 30 years, and I’ve never seen anything like this,” says Robert Fesen, an astronomer at Dartmouth College in Hanover, New Hampshire, who imaged the remnant late last year. He reported his findings at a meeting of the American Astronomical Society on 12 January and posted them in a not-yet-peer-reviewed paper on the same day1.

An 850-year-old firework

In 2013, amateur astronomer Dana Patchick discovered the object in archived images from NASA’s Wide-field Infrared Survey Explorer. Over the next decade, several teams studied the remnant, known as Pa 30, but the results became only more and more baffling.

Vasilii Gvaramadze, an astronomer at Lomonosov Moscow State University in Russia, and his colleagues found an extremely unusual star in 2019 at the dead center of Pa 302. That star had a surface temperature of roughly 200,000 kelvin, with a stellar wind travelling outward at 16,000 kilometres per second — roughly 5% of the speed of light. “Stars simply don’t have 16,000-kilometre-per-second winds,” Fesen says. Speeds of 4,000 kilometres per second aren’t unheard of, he says — but 16,000 is wild.

Pa 30 was again the subject of intrigue in 2021, when Andreas Ritter, an astronomer at the University of Hong Kong, and his colleagues proposed that the remnant is the aftermath of a supernova that lit up the sky nearly 850 years ago, in 11813. Chinese and Japanese astronomers observed the object for roughly six months before it faded.

During their examination of Pa 30, Ritter and his colleagues noted that the remnant’s emission spectrum contained a particular line associated with the element sulfur. Intrigued, Fesen’s group later imaged the remnant with an optical filter that is sensitive to that line using the 2.4-metre Hiltner Telescope at the Michigan–Dartmouth–MIT Observatory at Kitt Peak, Arizona.

The data they collected not only helped to confirm that Pa 30 is indeed what’s left of the supernova observed in 1181, but also yielded an image of the remnant unlike any other. It contains hundreds of fine filaments radiating outwards. Normally, researchers expect supernova remnants to look like the Crab Nebula — which looks less like a crab and more like a sea anemone, with a smooth region at the centre of an oval-shaped mass of tentacle-like filaments. They also commonly look like the Tycho Supernova, which looks like a sphere of jumbled knots.

But Pa 30 comparatively makes for “just an amazing image”, says Saurabh Jha, an astronomer at Rutgers University in Piscataway, New Jersey. “I’ve never seen anything like it before. It’s really mind-blowing.”

Cheating death

What could have caused such a remnant? In 2021, Ritter and his colleagues speculated that it was a rare supernova explosion classified as type Iax3.

A normal type-Ia supernova occurs when a white dwarf siphons material from a companion star, eventually growing so massive that it can no longer support the extra weight and blows itself to smithereens — dispersing its innards across the galaxy. But in a type-Iax supernova, the star somehow survives. “We often call these zombie stars,” Jha says.

Although theorists have developed many possible mechanisms to explain type-Iax supernovae, Ritter and his colleagues think that two white dwarfs slammed together to produce Pa 30’s fireworks. That’s clear from the amount of sulfur in the remnant, which is a byproduct of a white-dwarf explosion, and the lack of lighter elements that you would see from more massive stars.

Anthony Piro, an astronomer at Carnegie Observatories in Pasadena, California, thinks these findings crystallize at least one path through which a type Iax can form. But it is different from the previously favoured scenario, in which a white dwarf siphons material from a companion. That idea was developed in 2014, when astronomers successfully identified the stars involved in a Iax explosion by looking through archived images from before the event took place4.

So the Pa 30 finding “definitely broadens, in my mind, what could have led to a type-Iax supernova”, Jha says.

These rare explosions tend to occur in distant galaxies, making them difficult to study. But Pa 30 (if it is truly type Iax) is only 2.3 kiloparsecs away — meaning that future observations will shed more light on this unusual type of supernova.

Already, Fesen has applied for observing time on both the Hubble Space Telescope and the newer James Webb Space Telescope (JWST). “The optical image that was taken, I think, gives only a hint of what it really looks like,” Fesen says. “But the JWST image will be simply amazing.”

Read original article here

Famous Tycho’s star supernova flared up 450 years ago this month

One of the most spectacular celestial sights ever seen suddenly appeared in the northern night sky 450 years ago this month: a “new” star in the  constellation Cassiopeia (the Queen). It was the most brilliant nova recorded in some 500 years and, to this day, remains one of only five known supernovas observed in our Milky Way galaxy. 

To get an idea of just how dazzling this object was, step outside an evening this week at around 8 p.m. local time and look high up toward the north-northeast sky at the familiar zigzag row of five bright stars that make up the “W” of Cassiopeia. Next, look toward the south-southeast at the brilliant planet Jupiter, shining like a silvery beacon, and try to imagine what it would look like if you could somehow ramp up its brightness eightfold. Then, turn back to look at Cassiopeia. Try to visualize such a dazzling object in that region of the sky, and you will get an idea of what this strange new star must have looked like to those living in the late 16th century.

On Nov. 6, 1572, German astronomer Wolfgang Schüler of Wittenberg was the first to notice the appearance of this new star adjacent to the dimmest star at the center of Cassiopeia’s W.” Over the next three days, the strange interloper was sighted by many other skywatchers. 

Related: Night sky, November 2022: What you can see tonight [maps]

Seeing is believing

When this stellar object made its first appearance, it likely was no brighter than an ordinary star. But when it was spotted by Danish astronomer and nobleman Tycho Brahe (1546-1601) on Nov. 11, 1572, the star rivaled Jupiter in brightness and, in the nights to follow, became equal to Venus at its most brilliant. Tycho himself was probably bowled over by this dazzling object and actually stopped people in the street,  pointed skyward and asked them to verify what he was seeing. 

From his own written account of his discovery, he noted the following, according to “Burnham’s Celestial Handbook, Volume 1 (opens in new tab):”

“On the eleventh day of November in the evening after sunset … I was contemplating the stars in a clear sky. […] I noticed that a new and unusual star, surpassing the others in brilliancy, was shining almost directly above my head; and since I had, from boyhood, known all the stars of the heavens perfectly, it was quite evident to me that there had never been any star in that place in the sky (opens in new tab), even the smallest, to say nothing of a star so conspicuous and bright as this. I was so astonished at this sight that I was not ashamed to doubt the trustworthiness of my own eyes. But when I observed that others, on having the place pointed out to them, could see that there was really a star there, I had no further doubts. A miracle indeed, one that has never been previously seen before our time, in any age since the beginning of the world.”

For the next two weeks, the nova far outshone every star in the sky and could even be readily seen through the brilliance of the blue daytime sky, suggesting that it might have briefly rivaled Venus’ brightness. As November came to a close, the nova began to fade gradually, changing from a resplendent silver to yellow, then orange, then a reddish luster, before finally fading completely from view in March 1574, after having been visible to the naked eye for some 16 months. 

What did it mean?

Naturally, many people immediately thought of the Star of Bethlehem, seeing it as a sign placed in the heavens presaging the second coming of Christ.

But Tycho rejected this interpretation and pointed out that the star described in the Book of Matthew had been visible only to the Magi and, therefore, could not have been a heavenly body. Others speculated about the calamities it might bring. And it also seemed to throw a monkey wrench into the teachings of Aristotle, who, in his vast authority, had asserted that the world of stars was eternal and invariable. 

Statue of Tycho Brahe in front of a green copper roofed observatory next to Rosenborg Castle in Copenhagen, Denmark. (Image credit: BlackAperture/Getty Images)

Where did it come from?

So, what could this strange star have meant? For the rest of his life, Tycho puzzled over the mystery. He went on to write an extensive work, “De nova et nullius aevi memoria prius visa stella,” meaning “Concerning the star, new and never before seen in the life or memory of anyone.” The new star was neither a planet nor a comet, for it remained in the same place against the background stars through its entire run of visibility. These measurements clearly established that this strange heavenly body lay beyond the moon, in the realm of the fixed stars. Had it been nearer, Tycho would have detected a displacement as it moved across the sky. Thus, he concluded that Aristotle was wrong; the stars were not invariable. Tycho advanced a theory that the star had possibly formed as a condensation from dark matter of the Milky Way, even pointing out a dark area from which such a condensation might have occurred. 

Greek astronomer, geographer and mathematician Hipparchus (190 B.C.-120 B.C.) had also recorded new stars, though none was as stupendously bright as the one in 1572. “So perhaps,” Tycho reasoned, “the matter of the Milky Way occasionally coagulated into a star.”  But any such star would also have to quickly fade, “for anything that arises after the completion of the Creation can only be transitory.”  

Tycho’s account of the changes in brightness and his position measurements form a valuable record for modern researchers and scientists; in his honor, this amazing object is often dubbed Tycho’s star.  

A colossal blast 

In Latin, such a star was referred to as a “stella nova,” or “new star.” Today, we still call this kind of star a nova, though we know it’s far from new. In fact, modern observations reveal that we’re seeing the star exploding. Some of these explosions are not very great, but others are devastating, changing the entire character of the star. Indeed, these stars are far from being new; they are near the ends of their lives and really ought to be called dying stars.   

The internal temperatures of such stars can reach as high as 5 billion degrees Fahrenheit (2.8 billion degrees Celsius), where nuclear fusion makes elements as heavy as iron and ultimately results in an enormous explosion — a supernova. Tycho’s supernova of 1572 was categorized as a Type Ia (“Type one A”) supernova, which occurs when a white dwarf star pulls material from, or merges with, a nearby companion star until a violent explosion is triggered. The white dwarf is obliterated, sending its debris hurtling into space. 

An historic engraving depicting how Tycho’s ‘star’ might have appeared in 1572. (Image credit: mikroman6/Getty Images)

The smoking gun

For decades, the only remnants of the 1572 explosion were very faint shreds of nebulosity visible only in large telescopes; most of the residual debris cloud is all but invisible due to insufficient illumination. But in July 1999, the Chandra X-ray Observatory was placed into Earth orbit from space shuttle Columbia. It is sensitive to X-ray sources 100 times fainter than any previous X-ray telescope, and when it was trained toward Tycho’s supernova remnant, the first light image was finally obtained. A compact object at the center of the remnant revealed an intriguing pattern of bright clumps and thickets of knots and fainter areas — which could be a neutron star or even a black hole.

The distance to Tycho’s star is estimated to be somewhere between 8,000 and 9,800 light-years, which implies that, at its maximum, this bursting star had an actual luminosity of about 300 million times that of the sun! Such a star, in the course of just a few days, radiates into space an amount of energy equal to the entire output of the sun for several million years. 

Repeat performance anytime soon?

Will we ever have a chance to witness another stellar explosion similar to Tycho’s supernova in our lifetimes? Maybe. In the past 1,000 years, only five supernovas (opens in new tab) have been witnessed and recorded in our galaxy: A very bright new star that appeared in the southern constellation Lupus (the Wolf) in A.D. 1006; a brilliant supernova that erupted in the constellation Taurus (the Bull) in A.D. 1054; one seen by Chinese astronomers (opens in new tab) in 1181; Tycho’s star in 1572; and a supernova in 1604 that was extensively studied by German astronomer Johannes Kepler.

This suggests we should expect a supernova to appear at roughly 250-year intervals, on average, and based on that time frame, we are long overdue for another. And yet, twice we have had two supernovas occur within less than 50 years of each other, followed by a wait of over 500 years until the next pair, again separated by less than 50 years. Going by that odd time frame, we might not expect to see another until well into the 22nd century.

Still, nobody can say for certain when the next supernova will illuminate our skies. It might just be tonight, which is as good a reason as any to keep looking up!

Joe Rao serves as an instructor and guest lecturer at New York’s Hayden Planetarium (opens in new tab). He writes about astronomy for Natural History magazine (opens in new tab), the Farmers’ Almanac (opens in new tab) and other publications. Follow us on Twitter @Spacedotcom (opens in new tab) and on Facebook (opens in new tab)



Read original article here

Single Hubble image captured supernova at three different times

Enlarge / On the left, the full Hubble image. On the right, different images of the gravitationally lensed object.

NASA, ESA, STScI, Wenlei Chen, Patrick Kelly

Over the last few decades, we’ve gotten much better at observing supernovae as they’re happening. Orbiting telescopes can now pick up the high-energy photons emitted and figure out their source, allowing other telescopes to make rapid observations. And some automated survey telescopes have imaged the same parts of the sky night after night, allowing image analysis software to recognize new sources of light.

NASA, ESA, STScI, Wenlei Chen, Patrick Kelly

But sometimes, luck still plays a role. So it is with a Hubble image from 2010, where the image happened to also capture a supernova. But, because of gravitational lensing, the single event showed up at three different locations within Hubble’s field of view. Thanks to the quirks of how this lensing works, all three of the locations captured different times after the star’s explosion, allowing researchers to piece together the time course following the supernova, even though it had been observed over a decade earlier.

I’ll need that in triplicate

The new work is based on a search of the Hubble archives for old images that happen to capture transient events: something that’s present in some images of a location but not others. In this case, the researchers were searching specifically for events that had been gravitationally lensed. These occur when a massive foreground object distorts space in a way that creates a lensing effect, bending the path of light originating behind the lens from Earth’s perspective.

Because gravitational lenses are nowhere near as carefully structured as the ones we manufacture, they’ll often create odd distortions of background objects, or in many cases, magnify them in multiple locations. That’s what seems to have happened here, as there are three distinct images of a transient event within Hubble’s field of view. Other images of that region indicate that the site coincides with a galaxy; an analysis of the light from that galaxy suggests a redshift indicating that we’re looking at it as it was over 11 billion years ago.

Given its relative brightness, sudden appearance, and location within a galaxy, it’s most likely that this event is a supernova. And, at that distance, many of the high-energy photons produced in a supernova have been red-shifted down to the visible area of the spectrum, allowing them to be imaged by Hubble.

To understand more about the background supernova, the team worked out how the lens was operating. It was created by a galaxy cluster called Abell 370, and mapping the mass of that cluster allowed them to estimate the properties of the lens it created. The resulting lens model indicated that there were actually four images of the galaxy, but one wasn’t magnified enough to be visible; the three that were visible were magnified by factors of four, six, and eight.

But the model further indicated that the lensing also influenced the timing of the light’s arrival. Gravitational lenses force light to take paths between the source and observer with different lengths. And, since light moves at a fixed speed, those different lengths mean that the light takes a different amount of time to get here. Under circumstances we’re familiar with, this is an imperceptibly small difference. But on cosmic scales, it makes a dramatic difference.

Again, using the lensing model, the researchers estimated the likely delays. Compared to the earliest image, the second earliest had a delay of 2.4 days, and the third a delay of 7.7 days, with an uncertainty of about a day on all estimates. In other words, a single image of the region produced what was essentially a time course of a few days.

What was that?

By checking that Hubble data against different classes of supernovae that we’ve imaged in the modern Universe, it was likely to be produced by the explosion of either a red or blue supergiant star. And the detailed properties of the event were a much better fit to a red supergiant, one that was roughly 500 times the size of the Sun at the time of its explosion.

The intensity of the light at different wavelengths provides an indication of the explosion’s temperature. And the earliest image indicates that it was roughly 100,000 Kelvin, which suggests we were looking at it just six hours after it exploded. The latest lensed image shows that the debris had already cooled to 10,000 K over the eight days between the two different images.

Obviously, there are more recent and closer supernovae that we can study in far more detail if we want to understand the processes that drive a massive star’s explosion. If we’re able to find more of these lensed supernovae in the distant past, however, we’ll be able to infer things about the population of stars that were present much earlier in the Universe’s history. At the moment, however, this is only the second one we’ve found. The authors of the paper describing it make an effort to draw some inferences, but it’s clear those will have a higher uncertainty.

So, in many ways, this doesn’t help us make major advances in understanding the Universe. But as an example of the strange consequences of the forces that govern the Universe’s behavior, it’s a pretty impressive one.

Nature, 2022. DOI: 10.1038/s41586-022-05252-5  (About DOIs).

Go to discussion…

Read original article here

Hubble Space Telescope captures a supernova as it explodes

Talk about being at the right place at the right time.

In 2010, the Hubble Space Telescope captured several images of the Abell 370 galaxy cluster. In itself, that’s hardly a groundbreaking feat. But a team of astronomers systematically reviewing archival Hubble images discovered something incredible in those images: an image of an infant supernova that exploded some 11.5 billion years ago, taken just hours after the star’s death.

The team, led by postdoctoral researcher Wenlei Chen of the University of Minnesota, was looking for gravitationally lensed, transient events, and that’s exactly what the supernova is. It’s hidden behind Abell 370, but because light bends around the galaxy cluster due to its gravitational force — an effect known as gravitational lensing — we can actually see it from our vantage point, albeit in a warped manner.

Related: Hubble telescope spies a cosmic ‘spider web’ containing clues to dark secret

The left panel shows the portion of Abell 370 where the multiple images of the supernova appeared. Panel A, a composite of Hubble observations from 2011 to 2016, shows the locations of the multiply-imaged host galaxy after the supernova faded. Panel B, a Hubble picture from December 2010, shows the three images of the host galaxy and the supernova at different phases in its evolution. Panel C, which subtracts the image in Panel B from that in Panel A, shows three different faces of the evolving supernova. Using a similar image subtraction process for multiple filters of data, Panel D shows the different colors of the cooling supernova at three different stages in its evolution. (Image credit: NASA, ESA, STScI, Wenlei Chen (UMN), Patrick Kelly (UMN), Hubble Frontier Fields)

Inputting the Hubble data into models and analyzing details in the images like brightness and color, Chen and his team determined that the original star that had gone supernova was likely a red supergiant with a diameter approximately 530 times that of the sun.

They also determined that the first image in the series of three was taken by Hubble just six hours after the explosion following the core collapse, with the second and third being taken about 10 and 30 days after the explosion, respectively.

And because the supernova has high redshift — the wavelengths of light are stretched and shifted towards the red side of the spectrum due to the expansion of the universe — the astronomers were able to estimate the supernova’s age to approximately 11.5 billion years old, making it one of the oldest and most distant supernovas we’ve ever seen. 

The team hopes that their modeling will aid the study of similar distant supernovas, should they be discovered. Those discovered, in turn, would be able to progress the study of stellar populations at high redshift.

A paper based on this research was published in the journal Nature (opens in new tab) today.

Follow Stefanie Waldek on Twitter @StefanieWaldek (opens in new tab). Follow us on Twitter @Spacedotcom (opens in new tab) and on Facebook (opens in new tab). 



Read original article here