Tag Archives: seismic

‘Dr. Phil’ To End After 21 Seasons Amid Seismic Changes In Syndication – Deadline

Another daytime fixture, Dr. Phil McGraw, is leaving after more than two decades as one of television’s most popular talk show hosts. His syndicated daytime show, Dr. Phil, will end its run of original episodes with the current 2022-2023 television season, the show’s 21st.

McGraw’s decision comes as his most recent contract is coming to an end. Dr. Phil received a five-season renewal in 2018 as part of a mega-deal extension with CBS Media Ventures, taking it through its current season.

It’s been a transformational year in the increasingly challenging daytime talk show landscape, with stalwarts The Ellen DeGeneres Show, The Wendy Williams Show, Maury, Dr. Oz as well as The Real all ending within the past 12 months.

CBS Media Ventures will offer stations library episodes of Dr. Phil for the 2023-24 season and beyond. They will include new content such as wrap-arounds and intros by McGraw, as well as guest updates.

I hear the distributor is aiming to keep Dr. Phil’s primetime periods for the repeats at the same or similar price, which is facing some initial resistance from stations. CBS Media Ventures did this successfully with Judge Judy after the 2021 end of the hit court show. Repeats are airing in the same time periods in most major markets, with Judge Judy as the No. 4 most-watched syndicated program currently, with little ratings erosion.

McGraw, the current doyen of daytime, began his TV career on The Oprah Winfrey Show in the late ’90s before headlining his own spinoff, produced by Winfrey’s Harpo Studios. Launching in September 2002, Dr. Phil was an instant hit, second in ratings only to Oprah. Following Winfrey’s departure from daytime in 2011, Dr. Phil took the crown as the most watched daytime syndicated talk show, which it kept for the past decade, only recently slipping to No. 2 behind Live with Kelly & Ryan.

“I have been blessed with over 25 wonderful years in daytime television,” McGraw said. “With this show, we have helped thousands of guests and millions of viewers through everything from addiction and marriage to mental wellness and raising children. This has been an incredible chapter of my life and career, but while I’m moving on from daytime, there is so much more I wish to do.”

With two other daytime syndicated shows executive produced by McGraw, The Doctors and Daily Mail TV, canceled last year, his decision to end Dr. Phil marks a final exit from daytime for the popular TV personality who, alongside his daytime career, has been building a track record in primetime, executive producing back-to-back successful CBS drama series in Bull and freshman So Help Me Todd.

In the immediate future, McGraw plans to focus on primetime programming with a new partnership, slated for an early 2024 launch.

“I am compelled to engage with a broader audience because I have grave concerns for the American family, and I am determined to help restore a clarity of purpose as well as our core values,” he said.

During its run, Dr. Phil, featuring McGraw tackling a different topic on each show and offering advice to his guests, has received 31 Emmy nominations and won five PRISM Awards for the accurate depiction of drug, alcohol and tobacco abuse and addiction, as well as a MADD (Mothers Against Drunk Drivers) Media Award.

“Phil is a valued partner and member of the CBS/King World family, and while his show may be ending after 21 years, I’m happy to say our relationship is not,” said Steve LoCascio, president of CBS Media Ventures. “Phil changed the daytime landscape as the force behind one of the most popular talk shows ever on daytime TV. We plan to be in the Dr. Phil business with the library for years to come and welcome opportunities to work together in the future.”

          



Read original article here

Changes in Earth’s Outer Core Revealed by Seismic Waves From Earthquakes

A one-second discrepancy in the travel time of a set of seismic waves gives us an important and unprecedented glimpse of what’s happening deeper in the Earth’s interior.

Theory underpins our understanding of convection in the Earth’s outer core and its function in controlling the planet’s magnetic field. Convective flows or how they may be changing have never been directly observed by scientists. Virginia Tech geoscientist Ying Zhou puts proof forward for the first time.

A large earthquake shook the Kermadec Islands region in the South Pacific Ocean in May 1997. A little over 20 years later, in September 2018, a second big earthquake hit the same location, with its waves of seismic energy emanating from the same region.

Although two decades separated the earthquakes, because they occurred in the same region, they’d be expected to send seismic waves through the Earth’s layers at the same speed, said Ying Zhou, a geoscientist with the Department of Geosciences at the Virginia Tech College of Science.

The blue path illustrates a core-penetrating seismic wave moving through a region in the outer core, where the seismic speed has increased because a low-density flow has moved into the region. Credit: Virginia Tech’s Ying Zhou

However, in data recorded at four of more than 150 Global Seismographic Network stations that log seismic vibrations in real time, Zhou found a surprising anomaly among the twin events. During the 2018 earthquake, a set of seismic waves called SKS waves traveled about one second faster than their counterparts had in 1997.

According to Zhou, whose findings were published recently in

Blue lines are seismic rays in the outer core, where core-penetrating seismic waves moved through that region faster in 2018 than in 1997. Credit: Image courtesy of Ying Zhou

Scientists also have only been able to speculate about the source of gradual changes in strength and direction of the magnetic field that have been observed, which likely involves changing flows in the outer core.

“If you look at the north geomagnetic pole, it’s currently moving at a speed of about 50 kilometers (31 miles) per year,” Zhou said. “It’s moving away from Canada and toward Siberia. The magnetic field is not the same every day. It’s changing. Since it’s changing, we also speculate that convection in the outer core is changing with time, but there’s no direct evidence. We’ve never seen it.”

Zhou set out to find that evidence. The changes happening in the outer core aren’t dramatic, she said, but they’re worth confirming and fundamentally understanding. In seismic waves and their changes in speed on a decade time scale, Zhou saw a means for “direct sampling” of the outer core. That’s because the SKS waves she studied pass right through it.

“SKS” represents three phases of the wave: First it goes through the mantle as an S wave, or shear wave; then into the outer core as a compressional wave; then back out through the mantle as an S wave. How fast these waves travel depend in part on the density of the outer core that’s in their path. If the density is lower in a region of the outer core as the wave penetrates it, the wave will travel faster, just as the anomalous SKS waves did in 2018.

“Something has changed along the path of that wave, so it can go faster now,” Zhou said.

Ying Zhou of the Virginia Tech Department of Geosciences. Credit: Photo courtesy of Ying Zhou

To Zhou, the difference in wave speed points to low-density regions forming in the outer core in the 20 years since the 1997 earthquake. That higher SKS wave speed during the 2018 earthquake can be attributed to the release of light elements such as hydrogen, carbon, and oxygen in the outer core during convection that takes place as the Earth cools, she said.

“The material that was there 20 years ago is no longer there,” Zhou said. “This is new material, and it’s lighter. These light elements will move upward and change the density in the region where they’re located.”

To Zhou, it’s evidence that movement really is happening in the core, and it’s changing over time, as scientists have theorized. “We’re able to see it now,” she said. “If we’re able to see it from seismic waves, in the future, we could set up seismic stations and monitor that flow.”

What’s next

That’s Zhou’s next effort. Using a method of wave measurement known as interferometry, her team plans to analyze continuous seismic recordings from two seismic stations, one of which will serve as a “virtual” earthquake source, she said.

“We can use earthquakes, but the limitation of relying on earthquake data is that we can’t really control the locations of the earthquakes,” Zhou said. “But we can control the locations of seismic stations. We can put the stations anywhere we want them to be, with the wave path from one station to the other station going through the outer core. If we monitor that over time, then we can see how core-penetrating seismic waves between those two stations change. With that, we will be better able to see the movement of fluid in the outer core with time.”

Reference: “Transient variation in seismic wave speed points to fast fluid movement in the Earth’s outer core” by Ying Zhou, 25 April 2022, Communications Earth & Environment.
DOI: 10.1038/s43247-022-00432-7



Read original article here