Tag Archives: revolutionize

‘Revolutionize how we deal with waste’




© Provided by The Cool Down
Plastic eating enzyme can break down waste in 24 hours

Researchers at The University of Texas in Austin discovered an enzyme that eats plastic fast, and scientists think it could revolutionize how we deal with waste.

The team used artificial intelligence, chemical engineering, and synthetic biology to turn a natural enzyme called PETase into a plastic-eating machine. 

Quick science lesson: PET, which is short for polyethylene terephthalate, the chemical name for polyester, is a clear, strong, and lightweight plastic that’s widely used in food packaging and plastic bottles. PETase got its name from its ability to degrade these PET plastics.

To deconstruct PET plastic even more quickly and at low temperatures, researchers adjusted PETase to create a new enzyme, called FAST-PETase, which gives bacteria the ability to recycle waste plastic efficiently.

Since plastics account for 8% of all solid waste globally and this new enzyme is laser-focused on breaking it down, this is a potentially crucial discovery.

Most plastic — about 90% — isn’t recycled and either ends up in landfills, where it can leach long-lasting chemicals into the ground, or is burned or broken down at huge energy costs and tons of pollution produced. This enzyme, however, takes much less energy to produce and works quickly. 

Load Error

Plastic that would last almost 500 years in a landfill can be broken down in a day by bacteria armed with FAST-PETase and turned into base units that can be reused. 

Hal Alper, a professor of Chemical Engineering at UT Austin, told UT News that the possibilities of this discovery “are endless.”

“Beyond the obvious waste management industry, this also provides corporations from every sector the opportunity to take a lead in recycling their products,” he said. “We can begin to envision a true circular plastics economy.” 

The “circular economy” refers to an economic approach that relies on developing new goods without waste or pollution, reusing products and materials to their fullest extent, and restoring natural systems. 

Right now, humans have a so-called linear economy, also known as a “take/make/waste system,” in which we take raw materials, make a product, and then throw it away when the product becomes damaged or is no longer usable. By recycling plastic more efficiently, plastic waste can be diverted into more useful products, and the entire industry can become more sustainable.

The scientists at UT Austin are ramping up production for real-world uses. They see this product cleaning up landfills, high-waste industries, and polluted natural areas in the future.

Follow The Cool Down on Instagram and subscribe to our newsletter.

Scientists discover plastic-gobbling enzyme that can break down trash in 24 hours: ‘Revolutionize how we deal with waste’ first appeared on The Cool Down.

Continue Reading



Read original article here

Carbon Nanotubes Could Revolutionize Everything From Batteries and Water Purifiers to Auto Parts and Sporting Goods

Vertically aligned carbon nanotubes growing from catalytic nanoparticles (gold color) on a silicon wafer on top of a heating stage (red glow). Diffusion of acetylene (black molecules) through the gas phase to the catalytic sites determines the growth rate in a cold-wall showerhead reactor. Credit: Image by Adam Samuel Connell/LLNL

Scientists at the Department of Energy’s Lawrence Livermore National Laboratory (LLNL)  are scaling up the production of vertically aligned single-walled carbon nanotubes (SWCNT). This incredible material could revolutionize diverse commercial products ranging from rechargeable batteries, sporting goods, and automotive parts to boat hulls and water filters. The research was published recently in the journal Carbon.

Most carbon nanotube (CNT) production today is unorganized CNT architectures that is used in bulk composite materials and thin films. However, for many uses, organized CNT architectures, like vertically aligned forests, provide critical advantages for exploiting the properties of individual CNTs in macroscopic systems.

“Robust synthesis of vertically-aligned carbon nanotubes at large scale is required to accelerate deployment of numerous cutting-edge devices to emerging commercial applications,” said LLNL scientist and lead author Francesco Fornasiero. “To address this need, we demonstrated that the structural characteristics of single-walled CNTs produced at wafer scale in a growth regime dominated by bulk diffusion of the gaseous carbon precursor are remarkably invariant over a broad range of process conditions.”

The team of researchers discovered that the vertically oriented SWCNTs retained very high quality when increasing precursor concentration (the initial carbon) up to 30-fold, the catalyst substrate area from 1 cm2 to 180 cm2, growth pressure from 20 to 790 Mbar and gas flowrates up to 8-fold.

LLNL scientists derived a kinetics model that shows the growth kinetics can be accelerated by using a lighter bath gas to aid precursor diffusion. In addition, byproduct formation, which becomes progressively more important at higher growth pressure, could be greatly mitigated by using a hydrogen-free growth environment. The model also indicates that production throughput could be increased by 6-fold with carbon conversion efficiency of higher than 90% with the appropriate choice of the CNT growth recipe and fluid dynamics conditions.

“These model projections, along with the remarkably conserved structure of the CNT forests over a wide range of synthesis conditions, suggest that a bulk-diffusion-limited growth regime may facilitate preservation of vertically aligned CNT-based device performance during scale up,” said LLNL scientist and first author Sei Jin Park.

The team concluded that operating in a growth regime that is quantitatively described by a simple CNT growth kinetics model can facilitate process optimization and lead to a more rapid deployment of cutting-edge vertically-aligned CNT applications.

Applications include lithium-ion batteries, supercapacitors, water purification, thermal interfaces, breathable fabrics, and sensors.

Reference: “Synthesis of wafer-scale SWCNT forests with remarkably invariant structural properties in a bulk-diffusion-controlled kinetic regime” by Sei Jin Park, Kathleen Moyer-Vanderburgh, Steven F. Buchsbaum, Eric R. Meshot, Melinda L. Jue, Kuang Jen Wu and Francesco Fornasiero, 29 September 2022, Carbon.
DOI: 10.1016/j.carbon.2022.09.068

Other LLNL authors are Kathleen Moyer-Vanderburgh, Steven Buchsbaum, Eric Meshot, Melinda Jue and Kuang Jen Wu. The work is funded by the Chemical and Biological Technologies Department of the Defense Threat Reduction Agency.



Read original article here

Findings Could “Revolutionize” Our Understanding of Distance

The researchers discovered that a new theoretical framework to unify Hermitian and non-Hermitian physics is established by the duality between non-Hermiticity and curved spaces.

A physics puzzle is resolved through a new duality.

According to traditional thinking, distorting a flat space by bending it or stretching it is necessary to create a curved space. A group of scientists at Purdue University has developed a new technique for making curved spaces that also provides the answer to a physics mystery. The team has developed a method using non-Hermiticity, which occurs in all systems coupled to environments, to build a hyperbolic surface and a number of other prototypical curved spaces without causing any physical distortions of physical systems.

“Our work may revolutionize the general public’s understanding of curvatures and distance,” says Qi Zhou, Professor of Physics and Astronomy.

“It has also answered long-standing questions in non-Hermitian quantum mechanics by bridging non-Hermitian physics and curved spaces. These two subjects were assumed to be completely disconnected. The extraordinary behaviors of non-Hermitian systems, which have puzzled physicists for decades, become no longer mysterious if we recognize that the space has been curved. In other words, non-Hermiticity and curved spaces are dual to each other, being the two sides of the same coin.”

A Poincaré half-plane can be viewed in the background which demonstrates a curved surface. The white geodesics of the curved surface are shown as an analog of straight lines on a flat space. White balls moving in the right direction demonstrate the geometric origin of an extraordinary skin effect in non-Hermitian physics. Credit: Chenwei Lv and Ren Zhang.

The team’s results were published in the journal 

One must first comprehend the distinction between Hermitian and non-Hermitian systems in physics in order to comprehend how this discovery works. Zhou explains it using the example of a quantum particle that can “hop” between several locations on a lattice.

If the probability for a quantum particle to hop in the right direction is the same as the probability to hop in the left direction, then the Hamiltonian is Hermitian. If these two probabilities are different, the Hamiltonian is non-Hermitian. This is the reason that Chenwei and Ren Zhang have used arrows with different sizes and thicknesses to denote the hopping probabilities in opposite directions in their plot.

“Typical textbooks of quantum mechanics mainly focus on systems governed by Hamiltonians that are Hermitian,” says Lv.

“A quantum particle moving in a lattice needs to have an equal probability to tunnel along the left and right directions. Whereas Hermitian Hamiltonians are well-established frameworks for studying isolated systems, the couplings with the environment inevitably lead to dissipations in open systems, which may give rise to Hamiltonians that are no longer Hermitian. For instance, the tunneling amplitudes in a lattice are no longer equal in opposite directions, a phenomenon called nonreciprocal tunneling. In such non-Hermitian systems, familiar textbook results no longer apply and some may even look completely opposite to that of Hermitian systems. For instance, eigenstates of non-Hermitian systems are no longer orthogonal, in sharp contrast to what we learned in the first class of an undergraduate quantum mechanics course. These extraordinary behaviors of non-Hermitian systems have been intriguing physicists for decades, but many outstanding questions remain open.”

He further explains that their work provides an unprecedented explanation of fundamental non-Hermitian quantum phenomena. They found that a non-Hermitian Hamiltonian has curved the space where a quantum particle resides. For instance, a quantum particle in a lattice with nonreciprocal tunneling is in fact moving on a curved surface. The ratio of the tunneling amplitudes along one direction to that in the opposite direction controls how large the surface is curved.

In such curved spaces, all the strange non-Hermitian phenomena, some of which may even appear unphysical, immediately become natural. It is the finite curvature that requires orthonormal conditions distinct from their counterparts in flat spaces. As such, eigenstates would not appear orthogonal if we used the theoretical formula derived for flat spaces. It is also the finite curvature that gives rise to the extraordinary non-Hermitian skin effect that all eigenstates concentrate near one edge of the system.

“This research is of fundamental importance and its implications are two-fold,” says Zhang. “On the one hand, it establishes non-Hermiticity as a unique tool to simulate intriguing quantum systems in curved spaces,” he explains. “Most quantum systems available in laboratories are flat and it often requires significant efforts to access quantum systems in curved spaces. Our results show that non-Hermiticity offers experimentalists an extra knob to access and manipulate curved spaces.

An example is that a hyperbolic surface could be created and further be threaded by a magnetic field. This could allow experimentalists to explore the responses of quantum Hall states to finite curvatures, an outstanding question in condensed matter physics. On the other hand, the duality allows experimentalists to use curved spaces to explore non-Hermitian physics. For instance, our results provide experimentalists a new approach to access exceptional points using curved spaces and improve the precision of quantum sensors without resorting to dissipations.”

Now that the team has published their findings, they anticipate it spinning off into multiple directions for further study. Physicists studying curved spaces could implement their apparatuses to address challenging questions in non-Hermitian physics.

Also, physicists working on non-Hermitian systems could tailor dissipations to access non-trivial curved spaces that cannot be easily obtained by conventional means. The Zhou research group will continue to theoretically explore more connections between non-Hermitian physics and curved spaces. They also hope to help bridge the gap between these two physics subjects and bring these two different communities together with future research.

According to the team, Purdue University is uniquely qualified to foster this type of quantum research. Purdue has been growing strong in quantum information science at a fast pace over the past few years. The Purdue Quantum Science and Engineering Institute paired with the Department of Physics and Astronomy, allows the team to collaborate with many colleagues with diverse expertise and foster interdepartmental and collegiate growth on a variety of platforms that exhibit dissipations and nonreciprocal tunneling.

Reference: “Curving the space by non-Hermiticity” by Chenwei Lv, Ren Zhang, Zhengzheng Zhai, and Qi Zhou, 21 April 2022, Nature Communications.
DOI: 10.1038/s41467-022-29774-8



Read original article here

New Qubit Breakthrough Could Revolutionize Quantum Computing

A new qubit platform: Electrons from a heated light filament (top) land on solid neon (red block), where a single electron (represented as a wave function in blue) is trapped and manipulated by a superconducting quantum circuit (bottom patterned chip). Credit: Courtesy of Dafei Jin/Argonne National Laboratory

A new qubit platform could transform quantum information science and technology.

You are no doubt viewing this article on a digital device whose basic unit of information is the bit, either 0 or 1. Scientists around the world are racing to develop a new type of computer based on the use of quantum bits, or qubits.

In a paper published on May 4, 2022, in the journal Nature, a team led by the U.S. Department of Energy’s (DOE) Argonne National Laboratory has announced the creation of a new qubit platform formed by freezing neon gas into a solid at very low temperatures, spraying electrons from a light bulb’s filament onto the solid, and trapping a single electron there. This system has the potential to be developed into perfect building blocks for future quantum computers.

“It would appear an ideal qubit may be on the horizon. Thanks to the relative simplicity of the electron-on-neon platform, it should lend itself to easy manufacture at low cost.” — Dafei Jin, Argonne scientist in Center for Nanoscale Materials

To realize a useful quantum computer, the quality requirements for the qubits are extremely demanding. While there are various forms of qubits today, none of them is optimal.

What would make an ideal qubit? It has at least three sterling qualities, according to Dafei Jin, an Argonne scientist and the principal investigator of the project.

It can remain in a simultaneous 0 and 1 state (remember the cat!) over a long time. Scientists call this long “coherence.” Ideally, that time would be around a second, a time step that we can perceive on a home clock in our daily life.

Second, the qubit can be changed from one state to another in a short time. Ideally, that time would be around a billionth of a second (nanosecond), a time step of a classical computer clock.

Third, the qubit can be easily linked with many other qubits so they can work in parallel with each other. Scientists refer to this linking as entanglement.

Although at present the well-known qubits are not ideal, companies like IBM, Intel, Google, Honeywell, and many startups have picked their favorite. They are aggressively pursuing technological improvement and commercialization.

“Our ambitious goal is not to compete with those companies, but to discover and construct a fundamentally new qubit system that could lead to an ideal platform,” said Jin.

While there are many choices of qubit types, the team chose the simplest one — a single electron. Heating up a simple light filament you might find in a child’s toy can easily shoot out a boundless supply of electrons.

One of the challenges for any qubit, including the electron, is that it is very sensitive to disturbance from its surroundings. Thus, the team chose to trap an electron on an ultrapure solid neon surface in a vacuum.

Neon is one of a handful of inert elements that do not react with other elements. “Because of this inertness, solid neon can serve as the cleanest possible solid in a vacuum to host and protect any qubits from being disrupted,” said Jin.

A key component in the team’s qubit platform is a chip-scale microwave resonator made out of a superconductor. (The much larger home microwave oven is also a microwave resonator.) Superconductors — metals with no electrical resistance — allow electrons and photons to interact together at near to

“The microwave resonator crucially provides a way to read out the state of the qubit,” said Kater Murch, physics professor at the Washington University in St. Louis and a senior co-author of the paper. “It concentrates the interaction between the qubit and microwave signal. This allows us to make measurements telling how well the qubit works.”

“With this platform, we achieved, for the first time ever, strong coupling between a single electron in a near-vacuum environment and a single microwave photon in the resonator,” said Xianjing Zhou, a postdoctoral appointee at Argonne and the first author of the paper. “This opens up the possibility to use microwave photons to control each electron qubit and link many of them in a quantum processor,” Zhou added.

“Our qubits are actually as good as ones that people have been developing for 20 years.” — David Schuster, physics professor at the

“Our qubits are actually as good as ones that people have been developing for 20 years,” said David Schuster, physics professor at the University of Chicago and a senior co-author of the paper. “This is only our first series of experiments. Our qubit platform is nowhere near optimized. We will continue improving the coherence times. And because the operation speed of this qubit platform is extremely fast, only several nanoseconds, the promise to scale it up to many entangled qubits is significant.”

There is yet one more advantage to this remarkable qubit platform.“Thanks to the relative simplicity of the electron-on-neon platform, it should lend itself to easy manufacture at low cost,” Jin said. “It would appear an ideal qubit may be on the horizon.”

Reference: “Single electrons on solid neon as a solid-state qubit platform” by Xianjing Zhou, Gerwin Koolstra, Xufeng Zhang, Ge Yang, Xu Han, Brennan Dizdar, Xinhao Li, Ralu Divan, Wei Guo, Kater W. Murch, David I. Schuster and Dafei Jin, 4 May 2022, Nature.
DOI: 10.1038/s41586-022-04539-x

The team published their findings in a Nature article titled “Single electrons on solid neon as a solid-state qubit platform.” In addition to Jin and Zhou, Argonne contributors include Xufeng Zhang, Xu Han, Xinhao Li and Ralu Divan. In addition to David Schuster, the University of Chicago contributors also include Brennan Dizdar. In addition to Kater Murch of Washington University in St. Louis, other researchers include Wei Guo of

Funding for the Argonne research primarily came from the DOE Office of Basic Energy Sciences, Argonne’s Laboratory Directed Research and Development program and the Julian Schwinger Foundation for Physics Research.



Read original article here

New Qubit Breakthrough Could Revolutionize Quantum Computing

A new qubit platform: Electrons from a heated light filament (top) land on solid neon (red block), where a single electron (represented as a wave function in blue) is trapped and manipulated by a superconducting quantum circuit (bottom patterned chip). Credit: Courtesy of Dafei Jin/Argonne National Laboratory

A new qubit platform could transform quantum information science and technology.

You are no doubt viewing this article on a digital device whose basic unit of information is the bit, either 0 or 1. Scientists around the world are racing to develop a new type of computer based on the use of quantum bits, or qubits.

In a paper published on May 4, 2022, in the journal Nature, a team led by the U.S. Department of Energy’s (DOE) Argonne National Laboratory has announced the creation of a new qubit platform formed by freezing neon gas into a solid at very low temperatures, spraying electrons from a light bulb’s filament onto the solid, and trapping a single electron there. This system has the potential to be developed into perfect building blocks for future quantum computers.

“It would appear an ideal qubit may be on the horizon. Thanks to the relative simplicity of the electron-on-neon platform, it should lend itself to easy manufacture at low cost.” — Dafei Jin, Argonne scientist in Center for Nanoscale Materials

To realize a useful quantum computer, the quality requirements for the qubits are extremely demanding. While there are various forms of qubits today, none of them is optimal.

What would make an ideal qubit? It has at least three sterling qualities, according to Dafei Jin, an Argonne scientist and the principal investigator of the project.

It can remain in a simultaneous 0 and 1 state (remember the cat!) over a long time. Scientists call this long “coherence.” Ideally, that time would be around a second, a time step that we can perceive on a home clock in our daily life.

Second, the qubit can be changed from one state to another in a short time. Ideally, that time would be around a billionth of a second (nanosecond), a time step of a classical computer clock.

Third, the qubit can be easily linked with many other qubits so they can work in parallel with each other. Scientists refer to this linking as entanglement.

Although at present the well-known qubits are not ideal, companies like IBM, Intel, Google, Honeywell, and many startups have picked their favorite. They are aggressively pursuing technological improvement and commercialization.

“Our ambitious goal is not to compete with those companies, but to discover and construct a fundamentally new qubit system that could lead to an ideal platform,” said Jin.

While there are many choices of qubit types, the team chose the simplest one — a single electron. Heating up a simple light filament you might find in a child’s toy can easily shoot out a boundless supply of electrons.

One of the challenges for any qubit, including the electron, is that it is very sensitive to disturbance from its surroundings. Thus, the team chose to trap an electron on an ultrapure solid neon surface in a vacuum.

Neon is one of a handful of inert elements that do not react with other elements. “Because of this inertness, solid neon can serve as the cleanest possible solid in a vacuum to host and protect any qubits from being disrupted,” said Jin.

A key component in the team’s qubit platform is a chip-scale microwave resonator made out of a superconductor. (The much larger home microwave oven is also a microwave resonator.) Superconductors — metals with no electrical resistance — allow electrons and photons to interact together at near to

“The microwave resonator crucially provides a way to read out the state of the qubit,” said Kater Murch, physics professor at the Washington University in St. Louis and a senior co-author of the paper. “It concentrates the interaction between the qubit and microwave signal. This allows us to make measurements telling how well the qubit works.”

“With this platform, we achieved, for the first time ever, strong coupling between a single electron in a near-vacuum environment and a single microwave photon in the resonator,” said Xianjing Zhou, a postdoctoral appointee at Argonne and the first author of the paper. “This opens up the possibility to use microwave photons to control each electron qubit and link many of them in a quantum processor,” Zhou added.

“Our qubits are actually as good as ones that people have been developing for 20 years.” — David Schuster, physics professor at the

“Our qubits are actually as good as ones that people have been developing for 20 years,” said David Schuster, physics professor at the University of Chicago and a senior co-author of the paper. “This is only our first series of experiments. Our qubit platform is nowhere near optimized. We will continue improving the coherence times. And because the operation speed of this qubit platform is extremely fast, only several nanoseconds, the promise to scale it up to many entangled qubits is significant.”

There is yet one more advantage to this remarkable qubit platform.“Thanks to the relative simplicity of the electron-on-neon platform, it should lend itself to easy manufacture at low cost,” Jin said. “It would appear an ideal qubit may be on the horizon.”

Reference: “Single electrons on solid neon as a solid-state qubit platform” by Xianjing Zhou, Gerwin Koolstra, Xufeng Zhang, Ge Yang, Xu Han, Brennan Dizdar, Xinhao Li, Ralu Divan, Wei Guo, Kater W. Murch, David I. Schuster and Dafei Jin, 4 May 2022, Nature.
DOI: 10.1038/s41586-022-04539-x

The team published their findings in a Nature article titled “Single electrons on solid neon as a solid-state qubit platform.” In addition to Jin and Zhou, Argonne contributors include Xufeng Zhang, Xu Han, Xinhao Li and Ralu Divan. In addition to David Schuster, the University of Chicago contributors also include Brennan Dizdar. In addition to Kater Murch of Washington University in St. Louis, other researchers include Wei Guo of

Funding for the Argonne research primarily came from the DOE Office of Basic Energy Sciences, Argonne’s Laboratory Directed Research and Development program and the Julian Schwinger Foundation for Physics Research.



Read original article here

NASA is about to launch a laser demo that could revolutionize space communication

NASA’s upcoming Laser Communications Relay Demonstration could revolutionize the way the agency communicates with future missions across the solar system.

These lasers could lead to more high-definition videos and photos from space than ever before, according to the agency.

The mission is set to launch as a payload aboard the US Department of Defense’s Space Test Program Satellite 6 on December 5 from Cape Canaveral, Florida. The launch window will remain open from 4:04 a.m. to 6:04 a.m. ET, and the agency will share live coverage of the launch on NASA TV and its website.

Since 1958, NASA has used radio waves to communicate with its astronauts and space missions. While radio waves have a proven track record, space missions are becoming more complex and collecting more data than before.

Think of infrared lasers as the optical communication version of high-speed internet, as opposed to frustratingly slow dial-up internet. Laser communications will send data to Earth from an orbit synchronous with the Earth’s rotation, 22,000 miles (35,406 kilometers) above Earth’s surface at 1.2 gigabits-per-second, which is like downloading an entire movie in under a minute.

This will improve data transmission rates 10 to 100 times better than radio waves. Infrared lasers, which are invisible to our eyes, have shorter wavelengths than radio waves, so they can transmit more data at once.

Using the current radio wave system, it would take nine weeks to send back a complete map of Mars — but lasers could do it in nine days.

The Laser Communications Relay Demonstration is NASA’s first end-to-end laser relay system that will send and receive data from space to two optical ground stations in Table Mountain, California, and Haleakalā, Hawaii. These stations have telescopes that can receive the light from the lasers and translate it into digital data. Unlike radio antennas, laser communication receivers can be up to 44 times smaller. Because the satellite can both send and receive data, it’s a true two-way system.

The one disruption to these ground-based laser receivers is atmospheric disturbances, like clouds and turbulence, which can interfere with laser signals traveling through our atmosphere. The remote locations for the two receivers were chosen with this in mind since both typically have clear weather conditions at high altitudes.

Once the mission arrives in orbit, the team at the operations center in Las Cruces, New Mexico, will activate the Laser Communications Relay Demonstration and prepare it to send tests to the ground stations.

The mission is expected to spend two years conducting tests and experiments before it begins supporting space missions, including an optical terminal that will be installed on the International Space Station in the future. It will be able to send data from science experiments on the space station to the satellite, which will relay them back to Earth.

The demonstration acts as a relay satellite, which eliminates the need for future missions to have antennas with a direct line-of-sight on Earth. The satellite could help reduce the size, weight and power requirements for communications on future spacecraft — although this mission is about the size of a king mattress.

This means that future missions could be less expensive to launch and would have room for more science instruments.

Other missions currently in development that could test laser communication capabilities include the Orion Artemis II Optical Communications System, which will allow for an ultra-high-definition video feed between NASA and Artemis astronauts venturing to the moon.

And the Psyche mission, which launches in 2022, will reach its asteroid destination in 2026. The mission will study a metallic asteroid that is more than 150 million miles (241 million kilometers) away and test its Deep Space Optical Communication laser to send data back to Earth.

Read original article here

This Swedish carbon-fiber battery could revolutionize car design

Over the next few years, the batteries that go into electric vehicles are going to get cheap enough that an EV should cost no more than an equivalent-sized vehicle with an internal combustion engine. But those EVs are still going to weigh more than their gas-powered counterparts—particularly if the market insists on longer and longer range estimates—with the battery pack contributing 20-25 percent of the total mass of the vehicle.

But there is a solution: turn some of the car’s structural components into batteries themselves. Do that, and your battery weight effectively vanishes because regardless of powertrain, every vehicle still needs structural components to hold it together. It’s an approach that groups around the world have been pursuing for some time now, and the idea was neatly explained by Volvo’s chief technology officer, Henrik Green, when Ars spoke with him in early March:

What we have learned… just to take an example: “How do you integrate the most efficiently a battery cell into a car?” Well, if you do it in a traditional way, you put the cell into the box, call it the module; you put a number of modules into a box, you call that the pack. You put the pack into a vehicle and then you have a standardized solution and you can scale it for 10 years and 10 manufacturing slots.

But in essence, that’s a quite inefficient solution in terms of weight and space, etc. So here you could really go deeper, and how would you directly integrate the cells into a body and get rid of these modules and packs and stuff in between? That is the challenge that we are working with in future generations, and that will change how you fundamentally build cars. You might have thought that time of changing that would have ended, but it has just been reborn.

Tesla is known to be working on designing new battery modules that also work as structural elements, but the California automaker is fashioning those structural modules out of traditional cylindrical cells. There’s a more elegant approach to the idea, though, and a group at Chalmers University of Technology in Sweden led by professor Leif Asp has just made a bit of a breakthrough in that regard, making each component of the battery out of materials that work structurally as well as electrically.

The structural battery combines a carbon fiber anode and a lithium iron phosphate-coated aluminum foil cathode, which are separated by a glass fiber separator in a structural battery electrolyte matrix material. The anode does triple duty, hosting the lithium ions, conducting electrons, and reinforcing everything at the same time. The electrolyte and cathode similarly support structural loads and do their jobs in moving ions.

The researchers tested a couple different types of glass fiber—both resulting in cells with a nominal voltage of 2.8 V—and achieved better results in terms of battery performance with thinner, plain weave. The cells using this construction had a specific capacity of 8.55 Ah/kg, an energy density of 23.6 Wh/kg (at 0.05 C), a specific power of 9.56 W/kg (at 3 C), and a thickness of 0.27 mm. To put at least one of those numbers in context, the 4680 cells that Tesla is moving to have an energy density of 380 Wh/kg. However, that energy density figure for the cylindrical cells does not include the mass of the structural matrix that surrounds them (when used as structural panels).

Speaking of structural loads, the greatest stiffness was also achieved with plain glass fiber weave, at 25.5 GPa. Again, to put that number into context, it’s roughly similar to glass fiber-reinforced plastic, whereas carbon fiber-reinforced plastic will be around 10 times greater, depending on whether it’s resin transfer molding or woven sheets pre-impregnated with resin (known as pre-preg).

Professor Asp’s group is now working to see if swapping the cathode’s aluminum foil for carbon fiber will increase both stiffness (which it should) and electrical performance. The group is also testing even thinner separators. He hopes to reach 75 Wh/kg and 75 GPa, which would result in a cell that is slightly stiffer than aluminum (GPa: 68) but obviously much lighter.

Building electric cars or even airplanes out of structural composite batteries is still a longer-term project, and even at their best, structural battery cells may never approach the performance of dedicated cells. But since they would also replace heavier metal structures, the resulting vehicle should be much lighter overall.

Meanwhile, Asp thinks other products could see the benefits sooner. “The next generation structural battery has fantastic potential. If you look at consumer technology, it could be quite possible within a few years to manufacture smartphones, laptops, or electric bicycles that weigh half as much as today and are much more compact,” Asp said.

Listing image by Marcus Folino

Read original article here

“The Code Breaker”: Jennifer Doudna and how CRISPR may revolutionize mankind

When Jennifer Doudna won the Nobel Prize for Chemistry last year, there was no black-tie ceremony in Sweden. Because of the pandemic, she picked up the medal in her backyard.

Correspondent David Pogue asked Doudna, “Let’s cut to the really important thing: Where do you keep your Nobel?”

“Well, truth be told, I have the replica in my house, just a little frame, and have the real medal stashed away in a safe,” she replied.

Doudna is a biochemist at the University of California at Berkeley. She and her collaborator, Emmanuelle Charpentier, won the Nobel for their 2012 work on a scientific breakthrough that’s frequently described with words like “miraculous”: The gene-editing technique known as CRISPR, and acronym for Clustered Regularly Interspaced Short Palindromic Repeats.

Pogue asked, “What does it look like in the real world? Is it a computer? Is it software?”

“It’s not a computer and it’s not software. If you were looking at it in my lab, you would see a tube of colorless liquid,” Doudna said.

Two tubes, actually. The first contains molecules that have been engineered to latch onto one particular gene in the cells of a living thing – a specific part of its DNA. The proteins in the other liquid cuts the DNA at that spot. “It’s like a zip code that you can address to find a particular place in the DNA of a cell and literally, like scissors, make a snip,” said Doudna.

CBS News


Cutting DNA like this usually disables a gene. We can disable a gene that gives us a disease, or shut off the gene that limits how much fur cashmere goats grow, or how much muscle a beagle grows.

The next step is much harder: Swapping in a different DNA sequence, replacing it with something we’ve created ourselves. We’ll be able to rewrite the genes of any plant, animal or person.

Walter Isaacson is the author of bestselling books about Benjamin Franklin, Albert Einstein and Steve Jobs. His latest, “The Code Breaker” (published by Simon & Schuster, part of ViacomCBS), is about Jennifer Doudna and her work on CRISPR. “When I started this book, I thought, ‘OK, biotechnology and CRISPR, it’s the most amazing thing happening in our time,'” Isaacson said. “And then I realized by the end, I was understating the case.”

Simon & Schuster


Since Doudna published her paper in 2012, a lot’s been going on in the world’s CRISPR labs. Scientists have bred more nutritious tomatoes, and created a wheat that doesn’t contain gluten. Clinical trials are underway to treat some cancers using CRISPR techniques.

Those medical treatments show off CRISPR’s most jaw-dropping possibilities. About 7,000 human diseases are caused by gene mutations that, in theory, we can simply snip away. They include muscular dystrophy, cystic fibrosis, Huntington’s disease, and sickle-cell disease, a blood disorder that brings debilitating pain, infections, and early death. It affects about 100,000 Americans, including Victoria Gray, a Mississippi mother of four who became the first American to be treated with CRISPR-fixed genes.

In the year since receiving the experimental treatment, she’s had no severe pain or hospitalization.

Of course, like any revolutionary technology, this one has a dark side, with predictions of re-engineered human beings. Pogue asked Doudna, “The headlines are always about, ‘Oh, what you’ve unleashed is designer babies!’ Like, people are going to say, ‘I want blond, blue-haired, super-smart, super-muscular.’ Is that real?”

Biochemist Jennifer Doudna.

CBS News


“Well, yes and no. Mostly no,” Doudna replied. “We don’t really know which genes need to be edited for the kinds of traits that you mentioned. And I suspect that we’re talking about dozens, if not more, genes that would need to be tweaked. Doing that would be technically very challenging. So, I don’t think we’re on the verge of a world of CRISPR babies myself.

“But it’s close enough, in the sense that the technology fundamentally could enable this, that I think it’s critical that we have a discussion about it.”

Isaacson said, “Most people who have studied this say you got to draw a line between what’s medically necessary – in other words, trying to make sure people don’t get sickle cell anemia or Huntington’s – but it’s a blurry line. I mean, if you’re trying to improve somebody’s memory to make sure they don’t have Alzheimer’s, you’re also improving their memory.”

There’s also a difference between editing one person’s genes, like Victoria Gray’s, and making changes that will be passed on to their children.

In 2018, a Chinese doctor edited the embryos of three Chinese babies so that they, and their descendants, would be resistant to the HIV virus. Scientists worldwide condemned him for going rogue.

“In China at first, for about a day, he was celebrated as the first person to create designer babies,” Isaacson said. “But even the Chinese were appalled by what he did, and eventually he was tried and put under house arrest.”

Author Walter Isaacson (“The Code Breaker”). 

CBS News


Since that event, Doudna has been hosting a series of international conferences designed to hammer out ethical guidelines for using CRISPR, so that agreements are in place before a disaster happens.

“Gene editing is a fabulous technology that I think will ultimately help many, many people around the world,” she said. “And so to me, it’s more a question of managing it.”

In the last year, some of the most prominent CRISPR labs, including Doudna’s, have turned their attention to a different scientific Holy Grail: Protecting us from COVID, starting with work on a cheap, fast, at-home COVID test.

Doudna said, “I imagine having little CRISPR-based devices so that people can come to work, spit in a tube, and in 30 minutes get an answer, telling them whether they need to be quarantined or not.”

In the meantime, scientists all over the world are exploring CRISPR’s stunning potential to improve our lives.

Pogue asked Isaacson, “Do you think the biotech revolution will be as big in scope and impact as the digital revolution was?”

“I think the biotech revolution is going to be 10 times more important than the digital revolution, because it allows us to hack the code of life,” he replied. “And we shouldn’t be afraid of using this technology to make ourselves healthier.”

      
READ A BOOK EXCERPT: “The Code Breaker” by Walter Isaacson

     
For more info:

  • “The Code Breaker: Jennifer Doudna, Gene Editing, and the Future of the Human Race” by Walter Isaacson (Simon & Schuster), in Hardcover, eBook and Audio formats, available via Amazon and Indiebound
  • Walter Isaacson, Tulane University
  • Doudna Lab, Berkeley, Calif.
  • Innovative Genomics Institute, Berkeley, Calif.
  • CRISPR Therapeutics, Cambridge, Mass.
  • Sarah Cannon, Nashville, Tenn. 

     
Story produced by Mark Hudspeth. Editor: Steven Tyler.

     
See also:


Jennifer Doudna on the curiosity of a child

09:03

Read original article here

“The Code Breaker”: Jennifer Doudna and how CRISPR may revolutionize mankind

When Jennifer Doudna won the Nobel Prize for Chemistry last year, there was no black-tie ceremony in Sweden. Because of the pandemic, she picked up the medal in her backyard.

Correspondent David Pogue asked Doudna, “Let’s cut to the really important thing: Where do you keep your Nobel?”

“Well, truth be told, I have the replica in my house, just a little frame, and have the real medal stashed away in a safe,” she replied.

Doudna is a biochemist at the University of California at Berkeley. She and her collaborator, Emmanuelle Charpentier, won the Nobel for their 2012 work on a scientific breakthrough that’s frequently described with words like “miraculous”: The gene-editing technique known as CRISPR, and acronym for Clustered Regularly Interspaced Short Palindromic Repeats.

Pogue asked, “What does it look like in the real world? Is it a computer? Is it software?”

“It’s not a computer and it’s not software. If you were looking at it in my lab, you would see a tube of colorless liquid,” Doudna said.

Two tubes, actually. The first contains molecules that have been engineered to latch onto one particular gene in the cells of a living thing – a specific part of its DNA. The proteins in the other liquid cuts the DNA at that spot. “It’s like a zip code that you can address to find a particular place in the DNA of a cell and literally, like scissors, make a snip,” said Doudna.

CBS News


Cutting DNA like this usually disables a gene. We can disable a gene that gives us a disease, or shut off the gene that limits how much fur cashmere goats grow, or how much muscle a beagle grows.

The next step is much harder: Swapping in a different DNA sequence, replacing it with something we’ve created ourselves. We’ll be able to rewrite the genes of any plant, animal or person.

Walter Isaacson is the author of bestselling books about Benjamin Franklin, Albert Einstein and Steve Jobs. His latest, “The Code Breaker” (published by Simon & Schuster, part of ViacomCBS), is about Jennifer Doudna and her work on CRISPR. “When I started this book, I thought, ‘OK, biotechnology and CRISPR, it’s the most amazing thing happening in our time,'” Isaacson said. “And then I realized by the end, I was understating the case.”

Simon & Schuster


Since Doudna published her paper in 2012, a lot’s been going on in the world’s CRISPR labs. Scientists have bred more nutritious tomatoes, and created a wheat that doesn’t contain gluten. Clinical trials are underway to treat some cancers using CRISPR techniques.

Those medical treatments show off CRISPR’s most jaw-dropping possibilities. About 7,000 human diseases are caused by gene mutations that, in theory, we can simply snip away. They include muscular dystrophy, cystic fibrosis, Huntington’s disease, and sickle-cell disease, a blood disorder that brings debilitating pain, infections, and early death. It affects about 100,000 Americans, including Victoria Gray, a Mississippi mother of four who became the first American to be treated with CRISPR-fixed genes.

In the year since receiving the experimental treatment, she’s had no severe pain or hospitalization.

Of course, like any revolutionary technology, this one has a dark side, with predictions of re-engineered human beings. Pogue asked Doudna, “The headlines are always about, ‘Oh, what you’ve unleashed is designer babies!’ Like, people are going to say, ‘I want blond, blue-haired, super-smart, super-muscular.’ Is that real?”

Biochemist Jennifer Doudna.

CBS News


“Well, yes and no. Mostly no,” Doudna replied. “We don’t really know which genes need to be edited for the kinds of traits that you mentioned. And I suspect that we’re talking about dozens, if not more, genes that would need to be tweaked. Doing that would be technically very challenging. So, I don’t think we’re on the verge of a world of CRISPR babies myself.

“But it’s close enough, in the sense that the technology fundamentally could enable this, that I think it’s critical that we have a discussion about it.”

Isaacson said, “Most people who have studied this say you got to draw a line between what’s medically necessary – in other words, trying to make sure people don’t get sickle cell anemia or Huntington’s – but it’s a blurry line. I mean, if you’re trying to improve somebody’s memory to make sure they don’t have Alzheimer’s, you’re also improving their memory.”

There’s also a difference between editing one person’s genes, like Victoria Gray’s, and making changes that will be passed on to their children.

In 2018, a Chinese doctor edited the embryos of three Chinese babies so that they, and their descendants, would be resistant to the HIV virus. Scientists worldwide condemned him for going rogue.

“In China at first, for about a day, he was celebrated as the first person to create designer babies,” Isaacson said. “But even the Chinese were appalled by what he did, and eventually he was tried and put under house arrest.”

Author Walter Isaacson (“The Code Breaker”). 

CBS News


Since that event, Doudna has been hosting a series of international conferences designed to hammer out ethical guidelines for using CRISPR, so that agreements are in place before a disaster happens.

“Gene editing is a fabulous technology that I think will ultimately help many, many people around the world,” she said. “And so to me, it’s more a question of managing it.”

In the last year, some of the most prominent CRISPR labs, including Doudna’s, have turned their attention to a different scientific Holy Grail: Protecting us from COVID, starting with work on a cheap, fast, at-home COVID test.

Doudna said, “I imagine having little CRISPR-based devices so that people can come to work, spit in a tube, and in 30 minutes get an answer, telling them whether they need to be quarantined or not.”

In the meantime, scientists all over the world are exploring CRISPR’s stunning potential to improve our lives.

Pogue asked Isaacson, “Do you think the biotech revolution will be as big in scope and impact as the digital revolution was?”

“I think the biotech revolution is going to be 10 times more important than the digital revolution, because it allows us to hack the code of life,” he replied. “And we shouldn’t be afraid of using this technology to make ourselves healthier.”

      
READ A BOOK EXCERPT: “The Code Breaker” by Walter Isaacson

     
For more info:

  • “The Code Breaker: Jennifer Doudna, Gene Editing, and the Future of the Human Race” by Walter Isaacson (Simon & Schuster), in Hardcover, eBook and Audio formats, available via Amazon and Indiebound
  • Walter Isaacson, Tulane University
  • Doudna Lab, Berkeley, Calif.
  • Innovative Genomics Institute, Berkeley, Calif.
  • CRISPR Therapeutics, Cambridge, Mass.
  • Sarah Cannon, Nashville, Tenn. 

     
Story produced by Mark Hudspeth. Editor: Steven Tyler.

     
See also:


Jennifer Doudna on the curiosity of a child

Read original article here