Tag Archives: Polystyrene

Scientists Found Superworms That Love Eating Styrofoam, And It Could Be a Good Thing

Packing material, disposable cutlery, CD cases: Polystyrene is among the most common forms of plastic, but recycling it isn’t easy and the vast majority ends up in landfills or finds its way to the oceans where it threatens marine life.

 

Scientists at Australia’s University of Queensland have now discovered that superworms – the larvae of Zophobas morio darkling beetles – are eager to dine on the substance, and their gut enzymes could hold the key to higher recycling rates.

Chris Rinke, who led a study that was published in the journal Microbial Genomics on Thursday, told AFP previous reports had shown that tiny waxworms and mealworms (which are also beetle larvae) had a good track record when it came to eating plastic, “so we hypothesized that the much larger superworms can eat even more.”

Superworms grow up to two inches (five centimeters) and are bred as a food source for reptiles and birds, or even for humans in countries such as Thailand and Mexico.

Rinke and his team fed superworms different diets over a three week period, with some given polystyrene foam, commonly known as styrofoam, some bran, and others not fed at all.

“We confirmed that superworms can survive on a sole polystyrene diet, and even gain a small amount of weight – compared to a starvation control group – which suggests that the worms can gain energy from eating polystyrene,” he said.

Polystyrene in the gut of a worm. (University of Queensland)

Although the polystyrene-reared superworms completed their life cycle, becoming pupae and then fully developed adult beetles, tests revealed a loss of microbial diversity in their guts and potential pathogens.

These findings suggested that while the bugs can survive on polystyrene, it is not a nutritious diet and impacts their health.

Next, the team used a technique called metagenomics to analyze the microbial gut community and find which gene-encoded enzymes were involved in degrading the plastic.

Bio-upcycling

One way to put the findings to use would be to provide superworms with food waste or agricultural bioproducts to consume alongside polystyrene.

“This could be a way to improve the health of the worms and to deal with the large amount of food waste in Western countries,” said Rinke.

 

But while breeding more worms for this purpose is possible, he envisages another route: creating recycling plants that mimic what the larvae do, which is to first shred the plastic in their mouths then digest it through bacterial enzymes.

“Ultimately, we want to take the superworms out of the equation,” he said, and he now plans more research aimed at finding the most efficient enzymes, then enhancing them further through enzyme engineering.

The breakdown products from that reaction could then be fed to other microbes to create high-value compounds, such as bioplastics, in what he hopes would become an economically viable “upcycling” approach.

© Agence France-Presse

 

Read original article here

Polystyrene waste is everywhere, and it’s not biodegradable. Scientists just found a way to break it down.

Credit: ACS

Scientists at the U.S. Department of Energy’s Ames Laboratory and their partners from Clemson University have discovered a green, low-energy process to break down polystyrene, a type of plastic that is widely used in foam packaging materials, disposable food containers, cutlery, and many other applications.

Polystyrene is part of a much larger global plastic waste problem. Hundreds of millions metric tons of polymers are produced each year, a large majority of which is discarded after use. Due to the chemical stability and durability of industrial polymers, plastic waste does not easily degrade in landfills and is often burned, which produces carbon dioxide and other hazardous gases. In order to stop the growing flood of polymer waste and reduce carbon dioxide emissions, plastics have to be recycled or converted into new value-added products.

Currently, recycling of the vast majority of plastics is not economically feasible; their sorting and separation are time and labor intensive, while chemical processing and remanufacturing requires a significant energy input and toxic solvents. Re-processed polymers often show inferior performance to that of the freshly manufactured “made from scratch” materials.

A team of scientists at Ames Laboratory used processing by ball-milling to deconstruct commercial polystyrene in a single step, at room temperature, in ambient atmosphere in the absence of harmful solvents. Ball-milling is a technique that places materials in a milling vial with metal ball bearings which is then agitated until a desired chemical reaction occurs. Called mechanochemistry, this experimental approach has numerous applications in new materials synthesis, and attractive features where plastics recycling is concerned.

The deconstruction of polystyrene proceeds through a series of chemical events involving mechanical cutting apart of the macromolecules, which generates free radicals detectable in the milled material even after its prolonged exposure to air. The metal bearings used for milling and the ambient oxygen act as co-catalysts that enable extraction of the monomeric styrene from the oligomeric radical-bearing species formed. The experiments showed that the temperature rise in the material during milling is not responsible for the observed phenomenon since the temperature inside the milled powder does not exceed 50oC while the thermal decomposition of polystyrene in air starts at about 325oC. The Clemson’s group confirmed the comprehensive deconstruction of the original polymer into smaller fragments, oligomeric materials, suitable for further processing into new value-added products.

“This method represents an important breakthrough that enables dismantling of a polymer simultaneously with its break-down under ambient conditions, that is, ~300 C below the thermal decomposition temperature of the pristine material” said Ames Laboratory Senior Scientist Viktor Balema. “We think this proof of concept is an exciting possibility for developing new recycling technologies for all kinds of plastics, and that will contribute to establishment of the circular economy.”

His partner from Clemson University, Kentwool Distinguished Professor Igor Luzinov, further commented that “this discovery opens new avenues for low temperature recovery of monomers from multicomponent polymer based systems such as composites and laminates. Also, our technology will allow extracting the monomer from crosslinked materials containing styrene units in their structures.”

Alfred P. Sloan Foundation Research Fellow, Professor Aaron Rossini of Iowa State University, further noted that “electron paramagnetic resonance spectroscopy shows large concentrations of free radical carbon-centered species in polystyrene that was milled in air. This is a startling result because free radicals are normally very reactive. Also, the presence of the radicals gives direct evidence that the milling directly causes scission of the polymer chains. We expect that the reactive sites associated with the free radicals can be used to functionalize the processed polymers to obtain new value-added products.”

The research is further discussed in the paper “Depolymerization of polystyrene under ambient conditions,” authored by Viktor P. Balema, Ihor Z. Hlova, Scott L. Carnahan, Mastooreh Seyedi, Oleksandr Dolotko, Aaron J. Rossini, and Igor Luzinov; featured on the front cover of the New Journal of Chemistry.


Efficient solid-state depolymerization of waste PET


More information:
Viktor P. Balema et al. Depolymerization of polystyrene under ambient conditions, New Journal of Chemistry (2021). DOI: 10.1039/D0NJ05984F
Provided by
Ames Laboratory

Citation:
Polystyrene waste is everywhere, and it’s not biodegradable. Scientists just found a way to break it down. (2021, March 17)
retrieved 17 March 2021
from https://phys.org/news/2021-03-polystyrene-biodegradable-scientists.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.



Read original article here