Tag Archives: pancreas

Experimental Type 1 Diabetes Drug Shields Pancreas Cells from the Usual Crippling Immune System Attack – Good News Network

  1. Experimental Type 1 Diabetes Drug Shields Pancreas Cells from the Usual Crippling Immune System Attack Good News Network
  2. Experimental antibody drug prevents and even reverses diabetes onset New Atlas
  3. Immune-Targeting Drug Improves Insulin Production and Alters Autoimmune Response but Does Not Delay Type 1 Diabetes – NIDDK National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
  4. Another Monoclonal Antibody Delays Diabetes in Mouse Study Managed Healthcare Executive
  5. Scientists develop experimental type 1 diabetes drug which shields insulin-making cells from immune system attack Diabetes.co.uk

Read original article here

Multicenter, Randomized Trial of a Bionic Pancreas in Type 1 Diabetes

The authors’ full names and academic degrees are as follows: Steven J. Russell, M.D., Ph.D., Roy W. Beck, M.D., Ph.D., Edward R. Damiano, Ph.D., Firas H. El-Khatib, Ph.D., Katrina J. Ruedy, M.S.P.H., Courtney A. Balliro, R.N., C.D.C.E.S., C.R.N.-B.C., Zoey Li, M.S., Peter Calhoun, Ph.D., R. Paul Wadwa, M.D., Bruce Buckingham, M.D., Keren Zhou, M.D., Mark Daniels, M.D., Philip Raskin, M.D., Perrin C. White, M.D., Jane Lynch, M.D., Jeremy Pettus, M.D., Irl B. Hirsch, M.D., Robin Goland, M.D., John B. Buse, M.D., Ph.D., Davida Kruger, M.S.N., A.P.N.-B.C., B.C.-A.D.M., Nelly Mauras, M.D., Andrew Muir, M.D., Janet B. McGill, M.D., Fran Cogen, M.D., C.D.C.E.S., Jill Weissberg-Benchell, Ph.D., C.D.C.E.S., Jordan S. Sherwood, M.D., Luz E. Castellanos, M.D., Mallory A. Hillard, M.S.N., N.P., A.G.P.C.N.P.-B.C., Marwa Tuffaha, M.D., Melissa S. Putman, M.D., Mollie Y. Sands, M.D., Gregory Forlenza, M.D., Robert Slover, M.D., Laurel H. Messer, Ph.D., R.N., C.D.C.E.S., Erin Cobry, M.D., Viral N. Shah, M.D., Sarit Polsky, M.D., M.P.H., Rayhan Lal, M.D., Laya Ekhlaspour, M.D., Michael S. Hughes, M.D., Marina Basina, M.D., Betul Hatipoglu, M.D., Leann Olansky, M.D., Amrit Bhangoo, M.D., Nikta Forghani, M.D., Himala Kashmiri, M.D., Francoise Sutton, P.N.P., M.S.N., Abha Choudhary, M.D., Jimmy Penn, M.S.N., A.P.R.N., F.N.P.-C., C.D.C.E.S., Rabab Jafri, M.D., Maria Rayas, M.D., Elia Escaname, M.D., Catherine Kerr, M.D., Ruby Favela-Prezas, M.S.N., A.P.R.N., F.N.P.-B.C., Schafer Boeder, M.D., Subbulaxmi Trikudanathan, M.D., Kristen M. Williams, M.D., Natasha Leibel, M.D., M. Sue Kirkman, M.D., Kate Bergamo, F.N.P.-C., Klara R. Klein, M.D., Ph.D., Jean M. Dostou, M.D., Sriram Machineni, M.D., Laura A. Young, M.D., Ph.D., Jamie C. Diner, M.S.N., F.N.P.-C., R.N., C.D.E., Arti Bhan, M.D., J. Kimberly Jones, A.P.N.-B.C., B.C.-A.D.M., Matthew Benson, M.D., Keisha Bird, D.N.P., A.P.R.N., B.C.-A.D.M., Kimberly Englert, R.N., C.C.R.C., Joe Permuy, M.S.N., A.P.R.N., Kristina Cossen, M.D., Eric Felner, M.D., Maamoun Salam, M.D., Julie M. Silverstein, M.D., Samantha Adamson, M.D., Ph.D., Andrea Cedeno, M.D., Seema Meighan, C.P.N.P., and Andrew Dauber, M.D.

The authors’ affiliations are as follows: the Diabetes Research Center, Massachusetts General Hospital (S.J.R., C.A.B., J.S.S., L.E.C., M.A.H., M.T., M.S.P., M.Y.S.), and Boston University (E.R.D.), Boston, and Beta Bionics, Concord (E.R.D., F.H.E.-K.) — all in Massachusetts; the Jaeb Center for Health Research, Tampa (R.W.B., K.J.R., Z.L., P.C.), and Nemours Children’s Health Jacksonville, Jacksonville (N.M., M. Benson, K. Bird, K.E., J. Permuy) — both in Florida; the Barbara Davis Center for Diabetes, University of Colorado, Aurora (R.P.W., G.F., R.S., L.H.M., E.C., V.N.S., S.P.); Stanford University School of Medicine, Palo Alto (B.B., R.L., L.E., M.S.H., M. Basina), Children’s Hospital of Orange County, Orange (M.D., A. Bhangoo, N.F., H.K., F.S.), and the University of California, San Diego, La Jolla (J. Pettus, S.B.) — all in California; Cleveland Clinic, Cleveland (K.Z., B.H., L.O.); University of Texas Southwestern Medical Center, Dallas (P.R., P.C.W., A. Choudhary, J. Penn), and University of Texas Health Science Center, San Antonio (J.L., R.J., M.R., E.E., C.K., R.F.-P.); the University of Washington, Seattle (I.B.H., S.T.); the Naomi Berrie Diabetes Center, Columbia University, New York (R.G., K.M.W., N.L.); the University of North Carolina, Chapel Hill (J.B.B., M.S.K., K. Bergamo, K.R.K., J.M.D., S. Machineni, L.A.Y., J.C.D.); the Henry Ford Health System, Detroit (D.K., A. Bhan, J.K.J.); Emory University, Atlanta (A.M., K.C., E.F.); Washington University in St. Louis, St. Louis (J.B.M., M.S., J.M.S., S.A., A. Cedeno); Children’s National Hospital, Washington, DC (F.C., S. Meighan, A.D.); and the Pritzker Department of Psychiatry and Behavioral Health, Ann and Robert Lurie Children’s Hospital, Chicago (J.W.-B.).

Read original article here

Team of Experts Approve Do-It-Yourself Artificial Pancreas for People With Type 1 Diabetes

More than 40 healthcare professionals and legal experts have issued the first guidance of its kind to support people with type 1 diabetes using Do-it-Yourself (DIY) technology-driven systems to manage their condition.

The paper was co-led by King’s College London and Guy’s and St Thomas’ NHS Foundation Trust. It sets out recommendations that allow health-care professionals to support DIY artificial pancreas systems as a safe and effective treatment option for type 1 diabetes.

The work is published today (November 13, 2021) in (function(d, s, id){ var js, fjs = d.getElementsByTagName(s)[0]; if (d.getElementById(id)) return; js = d.createElement(s); js.id = id; js.src = "https://connect.facebook.net/en_US/sdk.js#xfbml=1&version=v2.6"; fjs.parentNode.insertBefore(js, fjs); }(document, 'script', 'facebook-jssdk'));

Read original article here

Coronavirus can transform pancreas cell function; certain genes may protect an infected person’s spouse

By Nancy Lapid

(Reuters) – The following is a summary of some recent studies on COVID-19. They include research that warrants further study to corroborate the findings and that have yet to be certified by peer review.

Coronavirus transforms pancreas cell function

When the coronavirus infects cells, it not only impairs their activity but can also change their function, new findings suggest. For example, when insulin-producing beta cells in the pancreas become infected with the virus, they not only produce much less insulin than usual, but also start to produce glucose and digestive enzymes, which is not their job, researchers found. “We call this a change of cell fate,” said study leader Dr. Shuibing Chen, who described the work in a presentation on Tuesday at the annual meeting of the European Association for the Study of Diabetes, held virtually this year. It is not clear whether the changes are long-lasting, or if they might be reversible, the researchers noted earlier in a report published in Cell Metabolism. Chen noted that some COVID-19 survivors have developed diabetes shortly after infection. “It is definitely worth investigating the rate of new-onset diabetes patients in this COVID-19 pandemic,” she said in a statement. Her team has been experimenting with the coronavirus in clusters of cells engineered to create mini-organs, or organoids, that resemble the lungs, liver, intestines, heart and nervous system. Their findings suggest loss of cell fate/function may be happening in lung tissues as well, Chen, from Weill Cornell Medicine in New York, told Reuters.

Certain genes may protect an infected patient’s spouse

A study of couples in which both partners were exposed to the coronavirus but only one person got infected is helping to shed light on why some people may be naturally resistant to the virus. The researchers had believed such cases were rare, but a call for volunteers who fit that profile turned up roughly a thousand couples. Ultimately, they took blood samples from 86 couples for detailed analysis. The results suggest resistant partners more often have genes that contribute to more efficient activation of so-called natural killer (NK) cells, which are part of the immune system’s initial response to germs. When NKs are correctly activated, they are able to recognize and destroy infected cells, preventing the disease from developing, the researchers explained in a report published on Tuesday in Frontiers in Immunology . “Our hypothesis is that the genomic variants most frequently found in the susceptible spouse lead to the production of molecules that inhibit activation of NKs,” study leader Mayana Zatz of the University of São Paulo, Brazil, said in a statement. The current study cannot prove this is happening, she added. Even if the findings are confirmed with more research, the contributions of other immune mechanisms would also need to be investigated, the researchers said.

Experimental pill shows promise against coronavirus variants

Laboratory studies show that Merck & Co’s experimental oral COVID-19 antiviral drug, molnupiravir, is likely to be effective in patients infected with any of the known variants of the coronavirus, including the dominant, highly transmissible Delta, researchers said on Wednesday in a presentation during IDWeek 2021, the virtual annual meeting of infectious disease organizations. Molnupiravir does not target the spike protein of the virus, which is the target of all current COVID-19 vaccines. Instead, it targets an enzyme the virus uses to make copies of itself. It is designed to work by introducing errors into the genetic code of the virus. Data showed that the drug is most effective when given early in the course of infection, Merck said. The company is conducting two large late-stage trials of the drug – one for treatment of COVID-19 and another as a preventive.

Click for a Reuters graphic https://tmsnrt.rs/3c7R3Bl on vaccines in development.

(Reporting by Nancy Lapid and Deena Beasley; Editing by Bill Berkrot)

Read original article here

The Ultimate News Site