Tag Archives: mathematics

Ed Sheeran goes big for Mathematics tour and intimate for Subtract shows – USA TODAY

  1. Ed Sheeran goes big for Mathematics tour and intimate for Subtract shows USA TODAY
  2. How long is Ed Sheeran’s concert? Philadelphia start and end times | NationalWorld NationalWorld
  3. Ed Sheeran hands out free cheesesteaks to fans in Philadelphia CBS Philadelphia
  4. Singer Ed Sheeran surprises Philadelphia fans with pop-up cheesesteak giveaway at Philip’s Steaks ahead of concert WPVI-TV
  5. Review: Ed Sheeran enthralls at the Met Philly in an intimate ‘sad, happy’ show, on the first of his two-night Philly stop The Philadelphia Inquirer
  6. View Full Coverage on Google News

Read original article here

UK boy, 11, receives highest possible Mensa IQ score

Brilliant, kiddo!

Eleven-year-old Yusuf Shah of England took the Mensa IQ test on a whim — and earned the highest possible score of 162, according to local news reports.

Albert Einstein and Stephen Hawking are estimated to have had IQs of around 160.

“Everyone at school thinks I am very smart, and I have always wanted to know if I was in the top 2% of the people who take the test,” the sixth-grader from Leeds told Yorkshire Evening Post.

Shah, a student at Wigton Moor Primary School, glided through the test, according to the report.

The family celebrated with Nando’s Portuguese-style chicken.

Shah and his parents had decided that he would prepare for the Mensa test while prepping for high-school applications, which included similar material.

“It is a difficult test to prepare for,” his father, Irfan Shah, told the paper. “We just did what we were already doing – nothing specific for the IQ test.”

“I still tell him that ‘your dad is still smarter than you’. … We take it all lightheartedly. Even if you are talented, you have to be the hardest worker,” the dad said.

Yusuf’s dad jokingly says, “I still tell him that ‘your dad is still smarter than you.’ ”
Yorkshire Post / SWNS
Yusuf Shah with brothers Zaki and Khalid, mother Sana and father Irfan.
Yorkshire Post / SWNS

Yusuf — who wants to study math at Oxford or Cambridge universities — has shown signs of genius since he was very young, Irfan told LeedsLive.

“Even in nursery, we just noticed that he was doing the alphabet and things quicker than other children, but you just thought some kids may pick up the ABCs a bit quicker,” the proud papa said.

“He just has this natural flair for math, and I guess that’s when we sort of realized. Even his school teachers, every time we get school reports, they’re amazing, they say, ‘There’s nothing for us to teach.’ “

Read original article here

Test scores: US math and reading scores plummeted during the pandemic



CNN
 — 

Fourth- and eighth-graders fell behind in reading and had the largest ever decline in math, according to a national educational assessment showing the devastating effect of the Covid-19 pandemic on America’s children.

The alarming findings are based on the National Assessment of Educational Progress reading and math exams, often called the “Nation’s Report Card” and conducted by the National Center for Education Statistics, a branch of the Education Department.

“If this is not a wake-up call for us to double down our efforts and improve education, even before it was – before the pandemic, then I don’t know what will,” US Secretary of Education Miguel Cardona told CNN’s Brianna Keilar during an appearance on “New Day” Monday.

He called on schools to ensure they are using funding from the Covid relief package passed in 2021 to boost student scores.

Cardona suggested widespread teacher shortages are a “symptom of decades of underinvestment” in schools and called on districts to pay teachers more competitively.

The first national assessment of student achievement in three years revealed the largest math score declines among fourth- and eighth-graders since the initial trial assessment in 1990, according to the Center’s Commissioner Peggy Carr. The tests were administered between January and March.

No state or large urban district showed improvements in math, the report said. Eighth-grade math scores sank in the more than 50 states and jurisdictions participating in the assessment. The last report card was issued in 2019, before the start of the pandemic in the US, where schools were shut down and teachers turned to online learning.

“Eighth grade is that gateway to more advanced mathematical course taking,” Carr told reporters before the report’s release. “This is what these students are missing. They’re missing these important skills that will prepare them eventually for (science, technology, engineering and math) level careers.”

The average math score of 236 for the fourth grade was 5 points lower than in 2019, and 8 points below the 2019 mark of 274 for the eighth grade. The reading score of 217 for the fourth grade was down 3 points this year – the same decline as the eighth grade score of 260 – compared to 2019.

The discouraging results come more than a month after the national assessment released results showing math and reading scores for 9-year-olds – typically fourth graders – fell between 2020 and 2022 by a level not seen in decades.

The Nation’s Report Card offers the first detailed look into how health crisis disruptions and virtual learning affected fourth- and eighth-graders across the country.

The report shows the pandemic affected all students but had a disproportionate impact on the most vulnerable, who fared the worst.

Scores on the eighth-grade math exams declined across most racial and ethnic groups as well as for lower, middle and high performing students. Fourth-grade math scores dropped for all racial and ethnic groups except native Hawaiian-Pacific Islanders.

The gaps between White students and Black and Hispanic students were larger in 2022 than three years ago, with greater score declines in math for Black and Hispanic students further widening those gaps.

“What we’re seeing is (lower performing) students … dropping even faster and we’re also seeing students who were not showing declines – students at the top, meaning students at the higher performing levels – they were holding steady before the pandemic or even improving,” Carr said. “Now all the students, regardless of their ability, are dropping. That is the point we need to be taking away from this report.”

The math exams reflected the performance of 116,200 fourth-graders in 5,780 schools, and 111,000 eighth-graders in 5,190 schools. The reading tests were given to 108,200 fourth-graders in 5,780 schools and 111,300 eighth-graders in 5,190 schools.

The declines are only partly attributable to the dynamics of schooling during the pandemic, when schools were shuttered and later turned to a mix of online and in-person classes in some cities.

“There’s nothing in this data that tells us that there is a measurable difference in the performance between states and districts based solely on how long schools were closed,” Carr said.

“And let’s not forget that remote learning looks very differently all across the United States. The quality – all of the factors that were associated with implementing remote learning – it is extremely complex.”

Declines in average math and reading scores in the fourth and eighth grades spanned the country – in the Northeast, Midwest, South and West, the report said.

“We’re not surprised to see that the math scores were going to take a bigger hit,” Carr said. “Math is just simply more sensitive to schooling. You really need good teachers to teach math. Reading, on the other hand, is something that parents and the community are more comfortable with helping students with.”

Carr said more analysis is needed to understand the role the pandemic played in the declines, along with other factors such as teacher shortages and bullying.

“This must be a wake-up call for the country that we have to make education a priority,” Beverly Perdue, former governor of North Carolina and chair of the National Assessment Governing Board which oversees the test, said in a statement.

Read original article here

Fields Medals in Mathematics Won by Four Under Age 40

Credit…Ruth Fremson/The New York Times

Most top mathematicians discovered the subject when they were young, often excelling in international competitions.

By contrast, math was a weakness for June Huh, who was born in California and grew up in South Korea. “I was pretty good at most subjects except math,” he said. “Math was notably mediocre, on average, meaning on some tests I did reasonably OK But other tests, I nearly failed.”

As a teenager, Dr. Huh wanted to be a poet, and he spent a couple of years after high school chasing that creative pursuit. But none of his writings were ever published. When he entered Seoul National University, he studied physics and astronomy and considered a career as a science journalist.

Looking back, he recognizes flashes of mathematical insight. In middle school in the 1990s, he was playing a computer game, “The 11th Hour.” The game included a puzzle of four knights, two black and two white, placed on a small, oddly shaped chess board.

The task was to exchange the positions of the black and white knights. He spent more than a week flailing before he realized the key to the solution was to find which squares the knights could move to. The chess puzzle could be recast as a graph where each knight can move to a neighboring unoccupied space, and a solution could be seen more easily.

Recasting math problems by simplifying them and translating them in a way that makes a solution more obvious has been the key to many breakthroughs. “The two formulations are logically indistinguishable, but our intuition works in only one of them,” Dr. Huh said.




A Puzzle of Mathematical Thinking

A Puzzle of Mathematical Thinking

Here is the puzzle that June Huh beat:

The New York Times

Goal: Exchange the positions of the black and white knights. →

Item 1 of 9

1 of 9

It was only in his last year of college, when he was 23, that he discovered math again. That year, Heisuke Hironaka, a Japanese mathematician who had won a Fields Medal in 1970, was a visiting professor at Seoul National.

Dr. Hironaka was teaching a class about algebraic geometry, and Dr. Huh, long before receiving a Ph.D., thinking he could write an article about Dr. Hironaka, attended. “He’s like a superstar in most of East Asia,” Dr. Huh said of Dr. Hironaka.

Initially, the course attracted more than 100 students, Dr. Huh said. But most of the students quickly found that the material incomprehensible and dropped the class. Dr. Huh continued.

“After like three lectures, there were like five of us,” he said.

Dr. Huh started getting lunch with Dr. Hironaka to discuss math.

“It was mostly him talking to me,” Dr. Huh said, “and my goal was to pretend to understand something and react in the right way so that the conversation kept going. It was a challenging task because I really didn’t know what was going on.”

Dr. Huh graduated and started working on a master’s degree with Dr. Hironaka. In 2009, when Dr. Huh applied to about a dozen graduate schools in the United States to pursue a doctoral degree.

“I was fairly confident that despite all my failed math courses in my undergrad transcript, I had an enthusiastic letter from a Fields Medalist, so I would be accepted from many, many grad schools.”

All but one rejected him — the University of Illinois Urbana-Champaign put him on a waiting list before finally accepting him.

“It was a very suspenseful few weeks,” Dr. Huh said.

At Illinois, he started the work that brought him to prominence in the field of combinatorics, an area of math that figures out the number of ways things can be shuffled. At first glance, it looks like playing with Tinker Toys.

Consider a triangle, a simple geometric object — what mathematicians call a graph — with three edges and three vertices where the edges meet.

One can then start asking questions like, given a certain number of colors, how many ways are there to color the vertices where none can be the same color? The mathematical expression that gives the answer is called a chromatic polynomial.

More complex chromatic polynomials can be written for more complex geometric objects.

Using tools from his work with Dr. Hironaka, Dr. Huh proved Read’s conjecture, which described the mathematical properties of these chromatic polynomials.

In 2015, Dr. Huh, together with Eric Katz of Ohio State University and Karim Adiprasito of the Hebrew University of Jerusalem, proved the Rota Conjecture, which involved more abstract combinatorial objects known as matroids instead of triangles and other graphs.

For the matroids, there are another set of polynomials, which exhibit behavior similar to chromatic polynomials.

Their proof pulled in an esoteric piece of algebraic geometry known as Hodge theory, named after William Vallance Douglas Hodge, a British mathematician.

But what Hodge had developed, “was just one instance of this mysterious, ubiquitous appearance of the same pattern across all of the mathematical disciplines,” Dr. Huh said. “The truth is that we, even the top experts in the field, don’t know what it really is.”

Read original article here

AI Is Discovering Patterns in Pure Mathematics That Have Never Been Seen Before

We can add suggesting and proving mathematical theorems to the long list of what artificial intelligence is capable of: Mathematicians and AI experts have teamed up to demonstrate how machine learning can open up new avenues to explore in the field.

 

While mathematicians have been using computers to discover patterns for decades, the increasing power of machine learning means that these networks can work through huge swathes of data and identify patterns that haven’t been spotted before.

In a newly published study, a research team used artificial intelligence systems developed by DeepMind, the same company that has been deploying AI to solve tricky biology problems and improve the accuracy of weather forecasts, to unknot some long-standing math problems.

“Problems in mathematics are widely regarded as some of the most intellectually challenging problems out there,” says mathematician Geordie Williamson from the University of Sydney in Australia.

“While mathematicians have used machine learning to assist in the analysis of complex data sets, this is the first time we have used computers to help us formulate conjectures or suggest possible lines of attack for unproven ideas in mathematics.”

The team shows AI advancing a proof for Kazhdan-Lusztig polynomials, a math problem involving the symmetry of higher-dimensional algebra that has remained unsolved for 40 years.

The research also demonstrated how a machine learning technique called a supervised learning model was able to spot a previously undiscovered relationship between two different types of mathematical knots, leading to an entirely new theorem.

 

Knot theory in math plays into various other challenging fields of science as well, including genetics, fluid dynamics, and even the behavior of the Sun’s corona. The discoveries that AI makes can therefore lead to advances in other areas of research.

“We have demonstrated that, when guided by mathematical intuition, machine learning provides a powerful framework that can uncover interesting and provable conjectures in areas where a large amount of data is available, or where the objects are too large to study with classical methods,” says mathematician András Juhász from the University of Oxford in the UK.

One of the benefits of machine learning systems is the way that they can look for patterns and scenarios that programmers didn’t specifically code them to look out for – they take their training data and apply the same principles to new situations.

The research shows that this sort of high-speed, ultra-reliable, large-scale data processing can act as an extra tool working with mathematicians’ natural intuition. When you’re dealing with complex, lengthy equations, that can make a significant difference.

The researchers hope that their work leads to many further partnerships between academics in the fields of mathematics and artificial intelligence, opening up the opportunity for findings that would otherwise be undiscovered.

“AI is an extraordinary tool,” says Williamson. “This work is one of the first times it has demonstrated its usefulness for pure mathematicians, like me.”

“Intuition can take us a long way, but AI can help us find connections the human mind might not always easily spot.”

The research has been published in Nature.

 

Read original article here

Advancing mathematics by guiding human intuition with AI

Framework

Supervised learning

In the supervised learning stage, the mathematician proposes a hypothesis that there exists a relationship between X(z) and Y(z). In this work we assume that there is no known function mapping from X(z) to Y(z), which in turn implies that X is not invertible (otherwise there would exist a known function Y ° X−1). While there may still be value to this process when the function is known, we leave this for future work. To test the hypothesis that X and Y are related, we generate a dataset of X(z), Y(z) pairs, where z is sampled from a distribution PZ. The results of the subsequent stages will hold true only for the distribution PZ, and not the whole space Z. Initially, sensible choices for PZ would be, for example, uniformly over the first N items for Z with a notion of ordering, or uniformly at random where possible. In subsequent iterations, PZ may be chosen to understand the behaviour on different parts of the space Z (for example, regions of Z that may be more likely to provide counterexamples to a particular hypothesis). To first test whether a relation between X(z) and Y(z) can be found, we use supervised learning to train a function (hat{f}) that approximately maps X(z) to Y(z). In this work we use neural networks as the supervised learning method, in part because they can be easily adapted to many different types of X and Y and knowledge of any inherent geometry (in terms of invariances and symmetries) of the input domain X can be incorporated into the architecture of the network37. We consider a relationship between X(z) and Y(z) to be found if the accuracy of the learned function (hat{f}) is statistically above chance on further samples from PZ on which the model was not trained. The converse is not true; namely, if the model cannot predict the relationship better than chance, it may mean that a pattern exists, but is sufficiently complicated that it cannot be captured by the given model and training procedure. If it does indeed exist, this can give a mathematician confidence to pursue a particular line of enquiry in a problem that may otherwise be only speculative.

Attribution techniques

If a relationship is found, the attribution stage is to probe the learned function (hat{f}) with attribution techniques to further understand the nature of the relationship. These techniques attempt to explain what features or structures are relevant to the predictions made by (hat{f}), which can be used to understand what parts of the problem are relevant to explore further. There are many attribution techniques in the body of literature on machine learning and statistics, including stepwise forward feature selection38, feature occlusion and attention weights39. In this work we use gradient-based techniques40, broadly similar to sensitivity analysis in classical statistics and sometimes referred to as saliency maps. These techniques attribute importance to the elements of X(z), by calculating how much (hat{f}) changes in predictions of Y(z) given small changes in X(z). We believe these are a particularly useful class of attribution techniques as they are conceptually simple, flexible and easy to calculate with machine learning libraries that support automatic differentiation41,42,43. Information extracted via attribution techniques can then be useful to guide the next steps of mathematical reasoning, such as conjecturing closed-form candidates f′, altering the sampling distribution PZ or generating new hypotheses about the object of interest z, as shown in Fig. 1. This can then lead to an improved or corrected version of the conjectured relationship between these quantities.

Topology

Problem framing

Not all knots admit a hyperbolic geometry; however, most do, and all knots can be constructed from hyperbolic and torus knots using satellite operations44. In this work we focus only on hyperbolic knots. We characterize the hyperbolic structure of the knot complement by a number of easily computable invariants. These invariants do not fully define the hyperbolic structure, but they are representative of the most commonly interesting properties of the geometry. Our initial general hypothesis was that the hyperbolic invariants would be predictive of algebraic invariants. The specific hypothesis we investigated was that the geometry is predictive of the signature. The signature is an ideal candidate as it is a well-understood and common invariant, it is easy to calculate for large knots and it is an integer, which makes the prediction task particularly straightforward (compared to, for example, a polynomial).

Data generation

We generated a number of datasets from different distributions PZ on the set of knots using the SnapPy software package45, as follows.

  1. 1.

    All knots up to 16 crossings (1.7 × 106 knots), taken from the Regina census46.

  2. 2.

    Random knot diagrams of 80 crossings generated by SnapPy’s random_link function (106 knots). As random knot generation can potentially lead to duplicates, we calculate a large number of invariants for each knot diagram and remove any samples that have identical invariants to a previous sample, as they are likely to represent that same knot with very high probability.

  3. 3.

    Knots obtained as the closures of certain braids. Unlike the previous two datasets, the knots that were produced here are not, in any sense, generic. Instead, they were specifically constructed to disprove Conjecture 1. The braids that we used were 4-braids (n = 11,756), 5-braids (n = 13,217) and 6-braids (n = 10,897). In terms of the standard generators σi for these braid groups, the braids were chosen to be (({sigma }_{{i}_{1}}^{{n}_{1}}{sigma }_{{i}_{2}}^{{n}_{2}}…{sigma }_{{i}_{k}}^{{n}_{k}}{)}^{N}) . The integers ij were chosen uniformly at random for the appropriate braid group. The powers nj were chosen uniformly at random in the ranges [−10, −3] and [3, 10]. The final power N was chosen uniformly between 1 and 10. The quantity ∑ |ni| was restricted to be at most 15 for 5-braids and 6-braids and 12 for 4-braids, and the total number of crossings N ∑ |ni| was restricted to lie in the range between 10 and 60. The rationale for these restrictions was to ensure a rich set of examples that were small enough to avoid an excessive number of failures in the invariant computations.

For the above datasets, we computed a number of algebraic and geometric knot invariants. Different datasets involved computing different subsets of these, depending on their role in forming and examining the main conjecture. Each of the datasets contains a subset of the following list of invariants: signature, slope, volume, meridional translation, longitudinal translation, injectivity radius, positivity, Chern–Simons invariant, symmetry group, hyperbolic torsion, hyperbolic adjoint torsion, invariant trace field, normal boundary slopes and length spectrum including the linking numbers of the short geodesics.

The computation of the canonical triangulation of randomly generated knots fails in SnapPy in our data generation process in between 0.6% and 1.7% of the cases, across datasets. The computation of the injectivity radius fails between 2.8% of the time on smaller knots up to 7.8% of the time on datasets of knots with a higher number of crossings. On knots up to 16 crossings from the Regina dataset, the injectivity radius computation failed in 5.2% of the cases. Occasional failures can occur in most of the invariant computations, in which case the computations continue for the knot in question for the remaining invariants in the requested set. Additionally, as the computational complexity of some invariants is high, operations can time out if they take more than 5 min for an invariant. This is a flexible bound and ultimately a trade-off that we have used only for the invariants that were not critical for our analysis, to avoid biasing the results.

Data encoding

The following encoding scheme was used for converting the different types of features into real valued inputs for the network: reals directly encoded; complex numbers as two reals corresponding to the real and imaginary parts; categoricals as one-hot vectors.

All features are normalized by subtracting the mean and dividing by the variance. For simplicity, in Fig. 3a, the salience values of categoricals are aggregated by taking the maximum value of the saliencies of their encoded features.

Model and training procedure

The model architecture used for the experiments was a fully connected, feed-forward neural network, with hidden unit sizes [300, 300, 300] and sigmoid activations. The task was framed as a multi-class classification problem, with the distinct values of the signature as classes, cross-entropy loss as an optimizable loss function and test classification accuracy as a metric of performance. It is trained for a fixed number of steps using a standard optimizer (Adam). All settings were chosen as a priori reasonable values and did not need to be optimized.

Process

First, to assess whether there may be a relationship between the geometry and algebra of a knot, we trained a feed-forward neural network to predict the signature from measurements of the geometry on a dataset of randomly sampled knots. The model was able to achieve an accuracy of 78% on a held-out test set, with no errors larger than ±2. This is substantially higher than chance (a baseline accuracy of 25%), which gave us strong confidence that a relationship may exist.

To understand how this prediction is being made by the network, we used gradient-based attribution to determine which measurements of the geometry are most relevant to the signature. We do this using a simple sensitivity measure ri that averages the gradient of the loss L with respect to a given input feature xi over all of the examples x in a dataset ({mathscr{X}}):

$${{bf{r}}}_{i}=frac{1}{|{mathscr{X}}|}{sum }_{{bf{x}}in {mathscr{X}}}|frac{partial L}{partial {{bf{x}}}_{i}}|$$

(3)

This quantity for each input feature is shown in Fig. 3a, where we can determine that the relevant measurements of the geometry appear to be what is known as the cusp shape: the meridional translation, which we will denote μ, and the longitudinal translation, which we will denote λ. This was confirmed by training a new model to predict the signature from only these three measurements, which was able to achieve the same level of performance as the original model.

To confirm that the slope is a sufficient aspect of the geometry to focus on, we trained a model to predict the signature from the slope alone. Visual inspection of the slope and signature in Extended Data Fig. 1a, b shows a clear linear trend, and training a linear model on this data results in a test accuracy of 78%, which is equivalent to the predictive power of the original model. This implies that the slope linearly captures all of the information about the signature that the original model had extracted from the geometry.

Evaluation

The confidence intervals on the feature saliencies were calculated by retraining the model 10 times with a different train/test split and a different random seed initializing both the network weights and training procedure.

Representation theory

Data generation

For our main dataset we consider the symmetric groups up to S9. The first symmetric group that contains a non-trivial Bruhat interval whose KL polynomial is not simply 1 is S5, and the largest interval in S9 contains 9! ≈ 3.6 × 105 nodes, which starts to pose computational issues when used as inputs to networks. The number of intervals in a symmetric group SN is O(N!2), which results in many billions of intervals in S9. The distribution of coefficients of the KL polynomials uniformly across intervals is very imbalanced, as higher coefficients are especially rare and associated with unknown complex structure. To adjust for this and simplify the learning problem, we take advantage of equivalence classes of Bruhat intervals that eliminate many redundant small polynomials47. This has the added benefit of reducing the number of intervals per symmetric group (for example, to ~2.9 million intervals in S9). We further reduce the dataset by including a single interval for each distinct KL polynomial for all graphs with the same number of nodes, resulting in 24,322 non-isomorphic graphs for S9. We split the intervals randomly into train/test partitions at 80%/20%.

Data encoding

The Bruhat interval of a pair of permutations is a partially ordered set of the elements of the group, and it can be represented as a directed acyclic graph where each node is labelled by a permutation, and each edge is labelled by a reflection. We add two features at each node representing the in-degree and out-degree of that node.

Model and training procedure

For modelling the Bruhat intervals, we used a particular GraphNet architecture called a message-passing neural network (MPNN)48. The design of the model architecture (in terms of activation functions and directionality) was motivated by the algorithms for computing KL polynomials from labelled Bruhat intervals. While labelled Bruhat intervals contain privileged information, these algorithms hinted at the kind of computation that may be useful for computing KL polynomial coefficients. Accordingly, we designed our MPNN to algorithmically align to this computation49. The model is bi-directional, with a hidden layer width of 128, four propagation steps and skip connections. We treat the prediction of each coefficient of the KL polynomial as a separate classification problem.

Process

First, to gain confidence that the conjecture is correct, we trained a model to predict coefficients of the KL polynomial from the unlabelled Bruhat interval. We were able to do so across the different coefficients with reasonable accuracy (Extended Data Table 1) giving some evidence that a general function may exist, as a four-step MPNN is a relatively simple function class. We trained a GraphNet model on the basis of a newly hypothesized representation and could achieve significantly better performance, lending evidence that it is a sufficient and helpful representation to understand the KL polynomial.

To understand how the predictions were being made by the learned function (hat{f}), we used gradient-based attribution to define a salient subgraph SG for each example interval G, induced by a subset of nodes in that interval, where L is the loss and xv is the feature for vertex v:

$${S}_{G}={vin G||frac{partial L}{partial {x}_{v}}| > {C}_{k}}$$

(4)

We then aggregated the edges by their edge type (each is a reflection) and compared the frequency of their occurrence to the overall dataset. The effect on extremal edges was present in the salient subgraphs for predictions of the higher-order terms (q3, q4), which are the more complicated and less well-understood terms.

Evaluation

The threshold Ck for salient nodes was chosen a priori as the 99th percentile of attribution values across the dataset, although the results are present for different values of Ck in the range [95,  99.5]. In Fig. 5a, we visualize a measure of edge attribution for a particular snapshot of a trained model for expository purposes. This view will change across time and random seeds, but we can confirm that the pattern remains by looking at aggregate statistics over many runs of training the model, as in Fig. 5b. In this diagram, the two-sample two-sided t-test statistics are as follows—simple edges: t = 25.7, P = 4.0 × 10−10; extremal edges: t = −13.8, P = 1.1 × 10−7; other edges: t = −3.2, P = 0.01. These significance results are robust to different settings of the hyper-parameters of the model.

Read original article here