Tag Archives: Mate

Prince Harry’s interview with Gabor Maté shows where his ‘delusions’ stem from – Sky News Australia

  1. Prince Harry’s interview with Gabor Maté shows where his ‘delusions’ stem from Sky News Australia
  2. Prince Harry Revealed This Controversial Activity Was a ‘Fundamental’ Part of His Drastic Lifestyle Change Yahoo Life
  3. Prince Harry talks about his healing process, therapy Good Morning America
  4. Prince Harry’s Gabor Maté Interview At Least “Didn’t Make Things Worse,” Royal Expert Says MarieClaire.com
  5. Prince Harry’s ‘public breakdown’: ‘Unstable’ behaviour as royal boasts about marijuana use Sky News Australia
  6. View Full Coverage on Google News

Read original article here

A ‘cataclysmic’ celestial couple gone wrong — a star eats its mate

An artist’s illustration shows a white dwarf and larger, sun-like star forming a “cataclysmic” binary system. (M.Weiss,Center for Astrophysics, Harvard and Smithsonian via Reuters)

Estimated read time: 3-4 minutes

WASHINGTON — Unlike the lonely sun, about half the stars in our Milky Way galaxy are in a long-term committed relationship with another star, orbiting each another in a celestial marriage called a binary system.

Researchers this week described one of these marriages gone wrong — a twosome that borders on the extreme, with the pair whirling around each other every 51 minutes in the fastest such orbital period known for a rare class of binary stars. As part of the drama, one star is eating its companion.

The two stars are located about 3,000 light years from Earth in the direction of the constellation Hercules. A light year is the distance light travels in a year, 5.9 trillion miles.

The system belongs to a class of binary stars known as “cataclysmic variables” in which a star similar to our sun orbits close to what is called a white dwarf, basically a hot and compact core of a burned-out star. Variable just means that their combined brightness varies over time when viewed from Earth. Cataclysmic refers to the fact that this luminosity changes dramatically — by a factor of 10,000 or more in some cases.

Over millions of years, the distance between these two stars has narrowed to the point that they now are closer together than the moon is to Earth.

“Imagine if the moon zipped across the sky 10 times a night. That’s the kind of speed we are talking about,” said Massachusetts Institute of Technology astrophysicist Kevin Burdge, lead author of the study published this week in the journal Nature.

Being close does not mean they are being nice to each other, though — the white dwarf is mercilessly siphoning material from its partner.

This larger star is about the same temperature as the sun but has been stripped down to just about 10% of the sun’s diameter — leaving it about the size of Jupiter, our solar system’s largest planet. The white dwarf has a mass about 56% that of our sun but is densely packed, with a diameter about 1.5 times that of Earth.

“It’s an old pair of stars, where one of the two moved on — when stars die of old age they become white dwarfs — but then this remnant began to eat its companion,” Burdge said.

“Basically, they were bound together for 8 billion years in a binary orbit. And now, right before the second one could end its stellar life cycle and become a white dwarf in the way that stars normally do — by evolving into a type of star called a red giant — the leftover white dwarf remnant of the first star interrupted the end of the companion’s lifecycle and started slowly consuming it,” Burdge said..

The researchers used data from the Palomar Observatory in California and telescopes in Hawaii and the Canary Islands.

Most stars are composed primarily of hydrogen, with lesser amounts of helium and other elements. The larger of the two stars in this binary — already growing old — is unusually helium-rich, not only because its companion has snacked on hydrogen from its outer layers but because it has lots of this element in its core through the slow process of fusing hydrogen atoms into helium in its thermonuclear cauldron.

This binary system periodically brightens and fades in part because the larger star is being physically deformed into a teardrop shape, rather than spherical, by the white dwarf’s gravitational tug.

There are more than a thousand known cataclysmic variables, though only a dozen have orbital periods below 75 minutes. While this binary system’s 51 minutes is speedy, it is not a record when compared to other classes of binaries. The fastest-known orbital period among binaries is just 5 minutes and 21 seconds, with two white dwarfs orbiting one another.

“There is tons of wild stuff going on in space,” Burdge said.

Most recent Science stories

More stories you may be interested in

Read original article here

Cancer warning: Mate tea increases risk

What’s more, a review article published in the BMJ cited research which found drinking “scalding hot” mate was associated with an increased risk of oesophageal cancer.

The research, published in the journal American Association for Cancer Research, was based on two case studies: a 1988 to 2005 Uruguay study and a 1986 to 1992 multinational study in Argentina, Brazil, Paraguay, and Uruguay, including 1,400 cases and 3,229 controls.

However, unlike the previous research, intensity of drinking mate did not influence cancer risk.

But the “strength of association increased with higher maté temperatures”, the researchers concluded.



Read original article here

“Black widow” neutron star devoured its mate to become heaviest found yet

Enlarge / A spinning neutron star periodically swings its radio (green) and gamma-ray (magenta) beams past Eart. A black widow pulsar heats the facing side of its stellar partner to temperatures twice as hot as the Sun’s surface and slowly evaporates it.

NASA’s Goddard Space Flight Center

Astronomers have determined the heaviest neutron star known to date, weighing in at 2.35 solar masses, according to a recent paper published in the Astrophysical Journal Letters. How did it get so large? Most likely by devouring a companion star—the celestial equivalent of a black widow spider devouring its mate. The work helps establish an upper limit on just how large neutron stars can become, with implications for our understanding of the quantum state of the matter at their cores.

Neutron stars are the remnants of supernovae. As Ars Science Editor John Timmer wrote last month:

The matter that forms neutron stars starts out as ionized atoms near the core of a massive star. Once the star’s fusion reactions stop producing enough energy to counteract the draw of gravity, this matter contracts, experiencing ever-greater pressures. The crushing force is enough to eliminate the borders between atomic nuclei, creating a giant soup of protons and neutrons. Eventually, even the electrons in the region get forced into many of the protons, converting them to neutrons.

This finally provides a force to push back against the crushing power of gravity. Quantum mechanics prevent neutrons from occupying the same energy state in close proximity, and this prevents the neutrons from getting any closer and so blocks the collapse into a black hole. But it’s possible that there’s an intermediate state between a blob of neutrons and a black hole, one where the boundaries between neutrons start to break down, resulting in odd combinations of their constituent quarks.

Short of black holes, the cores of neutron stars are the densest known objects in the Universe, and because they are hidden behind an event horizon, they are difficult to study. “We know roughly how matter behaves at nuclear densities, like in the nucleus of a uranium atom,” said Alex Filippenko, an astronomer at the University of California, Berkeley and co-author of the new paper. “A neutron star is like one giant nucleus, but when you have 1.5 solar masses of this stuff, which is about 500,000 Earth masses of nuclei all clinging together, it’s not at all clear how they will behave.”

This animation shows a black widow pulsar together with its small stellar companion. Powerful radiation and the pulsar’s “wind”—an outflow of high-energy particles—strongly heat the facing side of the companion, evaporating it over time.

The neutron star featured in this latest paper is a pulsar, PSR J0952-0607—or J0952 for short—located in the constellation Sextans between 3,200 and 5,700 light-years away from Earth. Neutron stars are born spinning, and the rotating magnetic field emits beams of light in the form of radio waves, X-rays, or gamma rays. Astronomers can spot pulsars when their beams sweep across Earth. J0952 was discovered in 2017 thanks to the Low-Frequency Array (LOFAR) radio telescope, following up on data on mysterious gamma ray sources collected by NASA’s Fermi Gamma-ray Space Telescope.

Your average pulsar spins at roughly one rotation per second, or 60 per minute. But J0952 is spinning at a whopping 42,000 revolutions per minute, making it the second-fastest-known pulsar thus far. The current favored hypothesis is that these kinds of pulsars were once part of binary systems, gradually stripping down their companion stars until the latter evaporated away. That’s why such stars are known as black widow pulsars—what Filippenko calls a “case of cosmic ingratitude”:

The evolutionary pathway is absolutely fascinating. Double exclamation point. As the companion star evolves and starts becoming a red giant, material spills over to the neutron star, and that spins up the neutron star. By spinning up, it now becomes incredibly energized, and a wind of particles starts coming out from the neutron star. That wind then hits the donor star and starts stripping material off, and over time, the donor star’s mass decreases to that of a planet, and if even more time passes, it disappears altogether. So, that’s how lone millisecond pulsars could be formed. They weren’t all alone to begin with—they had to be in a binary pair—but they gradually evaporated away their companions, and now they’re solitary.

This process would explain how J0952 became so heavy. And such systems are a boon to scientists like Filippenko and his colleagues keen to weigh neutron stars precisely. The trick is to find neutron star binary systems in which the companion star is small but not too small to detect. Of the dozen or so black widow pulsars the team has studied over the years, only six met that criteria.

Enlarge / Astronomers measured the velocity of a faint star (green circle) that has been stripped of nearly its entire mass by an invisible companion, a neutron star and millisecond pulsar that they determined to be the most massive yet found and perhaps the upper limit for neutron stars.

W. M. Keck Observatory, Roger W. Romani, Alex Filippenko

J0952’s companion star is 20 times the mass of Jupiter and tidally locked in orbit with the pulsar. The side facing J0952 is thus quite hot, reaching temperatures of 6,200 Kelvin (10,700° F), making it bright enough to be spotted with a large telescope.

Fillipenko et al. spent the last four years making six observations of J0952 with the 10-meter Keck telescope in Hawaii to catch the companion star at specific points in its 6.4-hour orbit around the pulsar. They then compared the resulting spectra to the spectra of similar Sun-like stars to determine the orbital velocity. This, in turn, allowed them to calculate the mass of the pulsar.

Finding even more such systems would help place further constraints on the upper limit to how large neutron stars can become before collapsing into black holes, as well as winnowing down competing theories on the nature of the quark soup at their cores. “We can keep looking for black widows and similar neutron stars that skate even closer to the black hole brink,” Filippenko said. “But if we don’t find any, it tightens the argument that 2.3 solar masses is the true limit, beyond which they become black holes.”

DOI: Astrophysical Journal Letters, 2022. 10.3847/2041-8213/ac8007  (About DOIs).

Read original article here

Heaviest Neutron Star Ever Discovered Is a “Black Widow” Devouring Its Mate

A spinning neutron star periodically swings its radio (green) and gamma-ray (magenta) beams past Earth in this artist’s concept of a black widow pulsar. The pulsar heats the facing side of its stellar partner to temperatures twice as hot as the sun’s surface and slowly evaporates it. Credit: NASA’s Goddard Space Flight Center/Cruz deWilde

Observations of faint, planet-size star help weigh its millisecond pulsar companion.

A dense, collapsed star has shredded and consumed nearly the entire mass of its stellar companion and, in the process, grown into the heaviest

“We know roughly how matter behaves at nuclear densities, like in the nucleus of a uranium

Astronomers measured the velocity of a faint star (green circle) that has been stripped of nearly its entire mass by an invisible companion, a neutron star and millisecond pulsar that they determined to be the most massive yet found and perhaps the upper limit for neutron stars. The objects are in the constellation Sextans. Credit: W. M. Keck Observatory, Roger W. Romani, Alex Filippenko

The extreme sensitivity of the 10-meter Keck I telescope on Maunakea in Hawai’i was what made it possible to measure of the neutron star’s mass. It recorded a spectrum of visible light from the hotly glowing companion star, which is now reduced to the size of a large gaseous planet. Located in the direction of the constellation Sextans, the stars are about 3,000 light-years from Earth.

Discovered in 2017, PSR J0952-0607 is referred to as a “black widow” pulsar. Their name is an analogy to the tendency of female black widow spiders to consume the much smaller male after mating. Hoping to establish the upper limit on how large neutron stars/pulsars can grow, Filippenko and Romani have been studying black widow systems for more than a decade.

“By combining this measurement with those of several other black widows, we show that neutron stars must reach at least this mass, 2.35 plus or minus 0.17 solar masses,” said Romani, who is a professor of physics in Stanford’s School of Humanities and Sciences and member of the Kavli Institute for Particle Astrophysics and Cosmology. “In turn, this provides some of the strongest constraints on the property of matter at several times the density seen in atomic nuclei. Indeed, many otherwise popular models of dense-matter physics are excluded by this result.”

If 2.35 solar masses is close to the upper limit of neutron stars, the astronomers say, then the interior is likely to be a soup of neutrons as well as up and down quarks — the constituents of normal protons and neutrons — but not exotic matter, such as “strange” quarks or kaons, which are particles that contain a strange quark.

“A high maximum mass for neutron stars suggests that it is a mixture of nuclei and their dissolved up and down quarks all the way to the core,” Romani said. “This excludes many proposed states of matter, especially those with exotic interior composition.”

Romani, Filippenko and Stanford graduate student Dinesh Kandel are co-authors of a paper describing the team’s results that were published today (July 26, 2022) in The Astrophysical Journal Letters.

How large can they grow?

Astrophysicists generally agree that when a star with a core larger than about 1.4 solar masses collapses at the end of its life, it forms a dense, compact object with an interior under such high pressure that all atoms are smashed together to form a sea of neutrons and their subnuclear constituents, quarks. These neutron stars are born spinning, and though too dim to be seen in visible light, reveal themselves as pulsars, emitting beams of light — radio waves, X-rays or even gamma rays — that flash Earth as they spin, much like the rotating beam of a lighthouse.

“Ordinary” pulsars spin and flash about once per second, on average, a speed that can easily be explained given the normal rotation of a star before it collapses. But some pulsars repeat hundreds or up to 1,000 times per second, which is hard to explain unless matter has fallen onto the neutron star and spun it up. But for some millisecond pulsars, no companion is visible.

One possible explanation for isolated millisecond pulsars is that each did once have a companion, but it stripped it down to nothing.

“The evolutionary pathway is absolutely fascinating. Double exclamation point,” Filippenko said. “As the companion star evolves and starts becoming a red giant, material spills over to the neutron star, and that spins up the neutron star. By spinning up, it now becomes incredibly energized, and a wind of particles starts coming out from the neutron star. That wind then hits the donor star and starts stripping material off, and over time, the donor star’s mass decreases to that of a planet, and if even more time passes, it disappears altogether. So, that’s how lone millisecond pulsars could be formed. They weren’t all alone to begin with — they had to be in a binary pair — but they gradually evaporated away their companions, and now they’re solitary.”

The pulsar PSR J0952-0607 and its faint companion star support this origin story for millisecond pulsars.

“These planet-like objects are the dregs of normal stars which have contributed mass and angular momentum, spinning up their pulsar mates to millisecond periods and increasing their mass in the process,” Romani said.

“In a case of cosmic ingratitude, the black widow pulsar, which has devoured a large part of its mate, now heats and evaporates the companion down to planetary masses and perhaps complete annihilation,” said Filippenko.

Spider pulsars include redbacks and tidarrens

Finding black widow pulsars in which the companion is small, but not too small to detect, is one of few ways to weigh neutron stars. In the case of this binary system, the companion star — now only 20 times the mass of

“We can keep looking for black widows and similar neutron stars that skate even closer to the black hole brink. But if we don’t find any, it tightens the argument that 2.3 solar masses is the true limit, beyond which they become black holes,” Filippenko said.

“This is right at the limit of what the Keck telescope can do, so barring fantastic observing conditions, tightening the measurement of PSR J0952-0607 likely awaits the 30-meter telescope era,” added Romani.

Reference: “PSR J0952-0607: The Fastest and Heaviest Known Galactic Neutron Star” by Roger W. Romani, D. Kandel, Alexei V. Filippenko, Thomas G. Brink and WeiKang Zheng, 26 July 2022, The Astrophysical Journal Letters.
DOI: 10.3847/2041-8213/ac8007

Other co-authors of the ApJ Letters paper are UC Berkeley researchers Thomas Brink and WeiKang Zheng. The work was supported by the National Aeronautics and Space Administration (80NSSC17K0024, 80NSSC17K0502), the Christopher R. Redlich Fund, the TABASGO Foundation, and UC Berkeley’s Miller Institute for Basic Research in Science.



Read original article here