Tag Archives: Jupiters

Scientists offer a new explanation for a mystery surrounding Jupiter’s two massive asteroid swarms

Credit: Unsplash/CC0 Public Domain

An international team of scientists, including NYU Abu Dhabi researcher Nikolaos Georgakarakos and others from the U.S., Japan, and China, led by Jian Li from Nanjing University, has developed new insights that may explain the numerical asymmetry of the L4 and L5 Jupiter Trojan swarms, two clusters containing more than 10,000 asteroids that move along Jupiter’s orbital path around the sun.

For decades, scientists have known that there are significantly more asteroids in the L4 swarm than the L5 swarm, but have not fully understood the reason for this asymmetry. In the current configuration of the solar system, the two swarms show almost identical dynamical stability and survivability properties, which has led scientists to believe that the differences came about during earlier times of our solar system’s life. Determining the cause of these differences could uncover new details about the formation and evolution of the solar system.

In the paper, “Asymmetry in the number of L4 and L5 Jupiter Trojans driven by jumping Jupiter,” published in the journal Astronomy & Astrophysics, the researchers present a mechanism that can explain the observed number asymmetry.

“We propose that an outward—in terms of distance to the sun—fast migration of Jupiter can distort the configuration of the Trojan swarms, resulting in more stable orbits in the L4 swarm than in the L5 one,” said Li.

“This mechanism, which temporarily induced different evolution paths for the two asteroid groups that share the orbit of Jupiter, provides a new and natural explanation for the unbiased observation, that the L4 asteroids are about 1.6 times more than the asteroids in the L5 swarm.”

The model simulates the orbital evolution of Jupiter, caused by a planetary orbital instability in the early solar system. This led to the outward migration of Jupiter at a very high speed; a migration that the researchers hypothesize was the possible cause of the changes in the stability of the nearby asteroid swarms. Future models could expand on this work by including additional aspects of the evolution of the solar system, which could depict it with improved accuracy. This could include simulating the fast migrations of Jupiter at different speeds, and the effects of nearby planets.

“The characteristics of the current solar system hold as-yet unsolved mysteries into its formation and early evolution,” said Georgakarakos.

“The ability to successfully simulate an event from an early stage of the solar system’s development and apply those results to modern day questions can also be a key tool as astrophysicists and other researchers work to learn more about the dawn of our world.”

More information:
Jian Li et al, Asymmetry in the number of L4 and L5 Jupiter Trojans driven by jumping Jupiter, Astronomy & Astrophysics (2022). DOI: 10.1051/0004-6361/202244443

Provided by
New York University

Citation:
Scientists offer a new explanation for a mystery surrounding Jupiter’s two massive asteroid swarms (2023, January 17)
retrieved 18 January 2023
from https://phys.org/news/2023-01-scientists-explanation-mystery-jupiter-massive.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.



Read original article here

Massive Volcanic Outburst Detected on Jupiter’s Hellish Moon Io : ScienceAlert

The most powerful volcanic eruptions in the Solar System occur not on Earth, but on Io, a sulfurous moon orbiting the planet Jupiter.

And now, researchers from the Planetary Science Institute (PSI) in the US have noticed a recent outburst that’s been surprisingly productive, even for a hellish world like Io.

In the space around Jupiter, a torus of plasma created and fed by Io’s volcanic emissions grew significantly richer between July and September of last year and persisted until December, showing the moon underwent a spate of volcanic activity that released a huge amount of material.

For something that’s just a little bit bigger than Earth’s Moon, Io is an absolute beast of volcanism. It’s bristling with volcanoes, with around 150 of the 400 known volcanoes erupting at any given time, creating vast lakes of molten lava.

This is all down to its relationship with Jupiter: Io orbits on an elliptical path, resulting in variations in the gravitational pull that change the shape of the moon as it swings around the planet.

The other Galilean moons tug on Io too. This creates frictional heating inside Io, which then spews out molten material from its interior.

What happens to the volcanic emissions from Io then has an effect on Jupiter. Because Io has no magnetic field of its own, the sulfur dioxide escapes, forming a torus of plasma that orbits Jupiter.

This is what feeds the permanent ultraviolet auroras that shimmer at Jupiter’s poles – the most powerful auroras in the Solar System.

This complex interplay is fascinating in its own right, of course. But it can also help inform other interactions of a similar nature that may be occurring out there in the broader galaxy.

So PSI astronomer Jeff Morgenthaler has been keeping an eye on Io by using the PSI’s Io Input/Output observatory (IoIO) since 2017.

IoIO image of the result of an Ionian volcanic outburst. (Jeff Morganthaler/PSI)

Jupiter is very big and very bright, so IoIO uses a coronagraphic technique: effectively minimizing the light shining off Jupiter so that Mogenthaler can see the light emitted by other things in the space around it, including the plasma torus.

This is how he sees that Io has a volcanic outburst every year; and how he was able to see that sulfur and sodium were being pumped into the torus in fall of last year.

However, while the quantities were huge, the torus was dimmer than other years. We don’t know what this means, yet, but unraveling it could tell us something new about the fiery dance between Jupiter and Io.

“This could be telling us something about the composition of the volcanic activity that produced the outburst or it could be telling us that the torus is more efficient at ridding itself of material when more material is thrown into it,” Morgenthaler says.

We’ll have to wait to learn more, but with IoIO on the ground and Juno currently orbiting Jupiter, additional information about the plasma torus will be coming in, especially since Juno can measure changes in Jupiter’s plasma environment.

In addition, Juno will be performing a flyby of Io in December 2023, so we’re looking forward to a wealth of information on the smelly yellow moon.

“Juno measurements,” Morgenthaler says, “may be able to tell us if this volcanic outburst had a different composition than previous ones.”

Read original article here

Massive, months-long volcanic eruption roils Jupiter’s moon Io

A massive volcanic eruption has been spotted emerging from Jupiter’s moon Io. The eruption was observed in the Fall of 2022 using the Io Input/Output observatory (IoIO) by Planetary Science Institute (PSI) senior scientist Jeff Morgenthaler.

One of Jupiter’s largest moons, Io is considered to be the solar system’s most volcanic body with its extreme conditions and yearly outbursts of volcanism caused by the tremendous gravitational influence of its parent planet.

The gravity of Jupiter, the solar system’s most massive planet, and that of two of the other large Jovian moons create powerful tidal forces within Io. This stretches and squeezes Io, the innermost of the four large Jovian moons, giving rise to violent volcanic activity. 

Related: Io: A guide to Jupiter’s volcanic moon

The PSI-operated IoIO is located near Benson, Arizona, and has been observing monitor volcanic activity on Io since 2017. Using a coronagraphic technique that dims the light coming from Jupiter the instrument is able to image faint gases near the gas giant.

This allowed Morgenthaler to spot the brightening of both sodium in a cloud or “nebula” around Jupiter which began between July and September 2022 and ended just last month. 

Ionized sulfur which surrounds Jupiter in a donut-like structure and is referred to as the Io plasma torus also brightened during the Fall of 2022. This was less pronounced however than the brightening of the Io plasma torus seen during previous outbursts.

A coronagraph image of a sodium outburst caused by Io’s volcanic eruption. The image was produced by the Planetary Science Institute’s Io Input/Output observatory (IoIO) (Image credit: Jeff Morgenthaler, PSI)

“This could be telling us something about the composition of the volcanic activity that produced the outburst or it could be telling us that the torus is more efficient at ridding itself of material when more material is thrown into it,” Morgenthaler said in a statement (opens in new tab).

The IoIO observations could be followed up by NASA’s Juno spacecraft which has been orbiting the gas giant since 2016. Juno is set for a close flyby of Io in December 2023 and its instruments are sensitive to plasma around Jupiter. 

This plasma can be traced back to Io’s volcanic activity, meaning that Juno could tell astronomers if the volcanic outburst of Fall 2022 had a different chemical makeup than other Io eruptions. 

Before Juno can get close enough for such an investigation, however, Morgenthaler is hoping more versions of IoIO could be up and running across the globe. 

“One of the exciting things about these observations is that they can be reproduced by almost any small college or ambitious amateur astronomer. Almost all of the parts used to build IoIO are available at a high-end camera shop or telescope store,” Morgenthaler said. “It would be great to see another IoIO come online before Juno gets to Jupiter next December.”

These additional IoIO copies in different global locations could help astronomers continue monitoring the Jovian moon from Earth during gaps enforced by unfavorable weather conditions. More IoIO units could also provide more time to cover Jupiter’s highly dynamic Io plasma torus and sodium nebula. 

In addition to studies of Jupiter and the elements surrounding it, IoIO is observing the sodium “tail” that follows Mercury and planets outside the solar system, exoplanets, as they transit the face of their stars. 

Follow us on Twitter @Spacedotcom (opens in new tab) or on Facebook (opens in new tab). 



Read original article here

Something weird is happening in Jupiter’s atmosphere

Something odd is happening in Jupiter’s atmosphere, a new study has revealed.

Forty years’ worth of measurements of Jupiter’s atmosphere by spacecraft and ground-based telescopes have revealed strange weather patterns on the largest planet of the solar system, including hot and cold periods during its long year (equivalent to 12 Earth years). But Jupiter isn’t going through seasonal changes like Earth does. 

On Earth, weather transitions between winter, spring, summer and fall are a result of the tilt of the planet’s axis toward the plane in which it orbits the sun. This 23-degree tilt makes different parts of the globe receive varying amounts of sunlight throughout the year. But Jupiter‘s axis is tilted toward the giant planet’s orbital plane by only 3 degrees, meaning that the amount of sun rays reaching different parts of Jupiter’s surface throughout its long year barely changes. Still, the new study found periodic temperature swings taking place around the planet’s cloud-covered globe. 

Related: Jupiter, too! New James Webb photos show giant planet’s rings, moons and more

“We’ve solved one part of the puzzle now, which is that the atmosphere shows these natural cycles,” Leigh Fletcher, an astronomer at the University of Leicester in the U.K. and a co-author of the new paper, said in a NASA statement (opens in new tab). “To understand what’s driving these patterns and why they occur on these particular timescales, we need to explore both above and below the cloudy layers.”

The team has found indications that these unseasonal seasons may have something to do with a phenomenon known as teleconnection. Teleconnection describes periodic changes in aspects of a planet’s atmospheric system that occur simultaneously in parts of the globe that are seemingly unconnected and could lie thousands of miles or kilometers apart. 

Teleconnection has been observed in Earth’s atmosphere since the 19th century, most notably in the famous La Nina – El Nino cycle, also known as the Southern Oscillation. During these events, changes in the trade winds of the western Pacific Ocean correspond with changes in rainfall across much of North America, according to the National Oceanic and Atmospheric Administration (NOAA). 

In the new research, the scientists found that on Jupiter, when temperatures rise at specific latitudes in the northern hemisphere, the same latitudes in the southern hemisphere cool off, almost like a perfect mirror image. 

“That was the most surprising of all,” Glenn Orton, a planetary scientist at NASA’s Jet Propulsion Laboratory in California and lead author of the study, said in the statement. 

“We found a connection between how the temperatures varied at very distant latitudes,” he said. “It’s similar to a phenomenon we see on Earth, where weather and climate patterns in one region can have a noticeable influence on weather elsewhere, with the patterns of variability seemingly ‘teleconnected’ across vast distances through the atmosphere.”

The measurements also revealed that when temperatures rise in the stratosphere, the upper layer of Jupiter’s atmosphere, they fall in the troposphere, the lowest atmospheric layer, where weather events occur, including Jupiter’s powerful storms. 

The study included data from 1978 onward, gathered by some of the best ground-based telescopes, including the Very Large Telescope in Chile, NASA’s Infrared Telescope Facility and the Subaru Telescope at the Mauna Kea Observatories in Hawaii. The researchers also used data from spacecraft such as the deep-space Voyager probes, which flew past Jupiter in 1979, and the Cassini mission, which flew past Jupiter in 2001 on its way to explore Saturn. 

“Measuring these temperature changes and periods over time is a step toward ultimately having a full-on Jupiter weather forecast, if we can connect cause and effect in Jupiter’s atmosphere,” Fletcher said in the statement. “And the even bigger-picture question is if we can someday extend this to other giant planets to see if similar patterns show up.”

Previously, scientists knew that Jupiter’s atmosphere features colder regions that appear in lighter colors and warmer regions that appear as brownish bands. The new study, which covers a period of three Jovian years, for the first time reveals how these patterns change over longer periods of time. 

The study (opens in new tab) was published in the journal Nature Astronomy on Monday (Dec. 19). 

Follow Tereza Pultarova on Twitter @TerezaPultarova. Follow us on Twitter @Spacedotcom and on Facebook



Read original article here

Stunning New NASA Pic Reveals Lava Glowing Red Hot on Jupiter’s Moon : ScienceAlert

NASA’s Juno spacecraft captured an infrared image of Jupiter’s moon Io from 50,000 miles (80,000 kilometers) away.

In the image, taken on July 5 and released on Wednesday, you can see the shapes of lava flows and lava lakes as bright red spots.

“You can see volcanic hotspots. We’ve been able to monitor over the course of the primary mission – over 30 orbits – how this changes and evolves,” Scott Bolton, principal investigator for NASA’s Juno spacecraft, said in a press event at the American Geophysical Union’s Fall Meeting on Wednesday.

NASA’s Juno mission captured an infrared view of Io in July. (NASA/JPL-Caltech/SwRI/ASI/INAF/JIRAM)

Io is home to hundreds of volcanoes, NASA has found. Surprisingly, scientists found more volcanic spots in the polar region than in the planet’s equatorial region, Bolton said.

The space probe Juno has been orbiting Jupiter since 2016. After studying the gas giant, Juno flew by Jupiter’s moon Ganymede in 2021 and by Europa earlier this year.

The spacecraft is scheduled to explore Io, which NASA says is the “the most volcanic place in the solar system,” again on December 15. It’s the first of nine flybys Juno has planned over the next year and a half.

Scientists hope to gather more data on the moon’s volcanoes and its magnetism – which play a “tug of war” to form Jupiter’s auroras – as they fly by.

“As we watch the volcanoes change and get active and less active, they’re driving Jupiter’s gigantic monster magnetosphere,” Bolton said on Wednesday.

Auroras are colorful displays of light that are not unique to Earth. Jupiter has the brightest auroras in the solar system, according to NASA.

On both Earth and Jupiter, auroras occur when charged particles, such as protons or electrons, interact with the magnetic field – known as the magnetosphere – that surrounds a planet. Jupiter’s magnetic field is about 20,000 times stronger than Earth’s.

The data and insights Juno gleans could help inform future missions to study Jupiter’s moons, like NASA’s Clipper mission, which will investigate whether Europa could support life.

This article was originally published by Business Insider.

More from Business Insider:

Read original article here

Jupiter’s Moon Io Might Have a Hellish Magma Ocean Beneath Its Surface

There are more than 200 moons in the solar system, but none quite like Io, the third largest of Jupiter’s 80 moons. Io is really, really volcanic. In fact, it’s peppered with so many hundreds of powerful active volcanoes that there must be something unusual beneath its crust.

That something could be a thick moonwide layer of molten rock—or a “subsurface magma ocean,” according to a new study published in the Planetary Science Journal on Nov. 16 from Yoshinori Miyazaki and David Stevenson, planetary scientists at the California Institute of Technology.

That possible super-hot sea of melted rock—which is unique in the solar system—could harbor secrets, weird mechanisms for forming moons and planets, and even recipes for exotic alien life. Only further scrutiny of the 2,200-mile-diameter moon will tell.

Miyazaki and Stevenson aren’t the first scientists to make an educated guess at what lies beneath Io’s potentially 20-mile-thick rocky crust. It’s been the subject of heated debate for years. But their new peer-reviewed study of the moon’s mantle might be the most thorough yet.

A volcanic explosion on Io, Jupiter’s third largest moon, as captured by NASA’s New Horizon spacecraft.

NASA/JPL/University of Arizona

To peer beneath Io’s surface, Miyazaki and Stevenson revisited reams of data from NASA’s Galileo probe, which orbited Jupiter for eight years starting in 1995. Initial analysis of the probe’s magnetic data led to a loose consensus that Io’s mantle—the layer under the moon’s crust—includes a 30-mile thick top layer that should be “molten or partially molten,” according to NASA.

Compare this to Earth’s own mantle, as well as the mantles of every other planetary body in the solar system, which are mostly solid and consist largely of ice or superheated rocks. Broadly speaking, planetary scientists reading the Galileo data assumed Io either has an underground magma ocean or a kind of sponge-like rocky outer mantle soaked in magma.

A fresh look at the data led Miyazaki and Stevenson concludes it’s the molten sea. They based their conclusion on estimates of the mantle’s temperature via analysis of Io’s volcanoes, which can spew magma hundreds of miles into the moon’s sulfur dioxide atmosphere. The top of the mantle might register as hot as 2,800 degrees Fahrenheit.

That’s hot. But not hot enough to sustain a spongy interior. The analysis is complicated, but it boils down to this: Like a pot of gravy on a stovetop, Io would need a lot of heat to stay consistently spongy in its upper mantle. Without enough heat, the gravy—er, the spongy rock—would separate: rock on bottom, magma on top.

Miyazaki and Stevenson crunched the numbers, calculating the heat from Io’s core as well as the effects of its weird, highly-elliptical orbit, which sloshes the mantle, spreads heat around, and keeps Io from ever permanently cooling.

They concluded that the gravy would separate. “The amount of internal heating is insufficient to maintain a high degree of melting,” they wrote. Hence what they believe could be a topmost magma ocean.

Luckily, we’ll know more soon. NASA’s Juno probe, which arrived around Jupiter in 2016, is scheduled to take readings of Io in 2023 and 2024—specifically measuring the “Love number,” a gauge of a planet’s rigidity or lack thereof. “If a large Love number is found, we can say with more certainty that a magma ocean exists beneath Io’s surface,” Miyazaki told The Daily Beast.

We already knew Io is weird. It’s possible it’s even weirder—and that weirdness could have implications across the space sciences. “I don’t think it greatly changes understanding of planetary formation, but it does change how we view the internal structure and thermal evolution of tidally heated bodies like Io,” David Grinspoon, a senior scientist with the Arizona-based Planetary Science Institute, told The Daily Beast.

Io and Europa, Jupiter’s two largest moons, captured by NASA’s Juno spacecraft.

NASA/JPL-Caltech/SwRI/MSSS/Roman Tkachenko

Lurking in the academic shadows are the astrobiologists. The experts in how and where life could evolve in the universe. If there’s extraterrestrial life out there somewhere and it looks like Earth life, we should expect to find it—or evidence of its extinction—on planets and moons that have, or had, Earthlike environments. Mars. Venus. A moon of Saturn called Enceladus.

But volcanoes with their extreme transfers of energy are widely considered key components of a living ecosystem. So planets and moons with lots of volcanoes are great places to look for E.T. In theory, that should include Io.

However, Io might have too many volcanoes. So if there’s life evolving there, it’s probably very strange life that really likes heat. “Lava tubes could be creating a condition favorable for microbes,” Miyazaki said.

The question, for astrobiologists, is whether a magma ocean would create more or fewer lava tubes than a magma sponge. “I don’t have an explicit answer,” Miyazaki said. “But it’s interesting to think about such implications.”

Dirk Schulze-Makuch, an astrobiologist at the Technical University Berlin, has long advocated a thorough search for life on Io. A magma ocean would only spoil that search if it were really close to the surface. A nice thick crust should insulate the outermost regions of the planet from scouring heat, and preserve the potential for evolution. “There seems to be quite a bit of crust,” Schulze-Makuch told The Daily Beast.

If anything, the possibility of a magma ocean on Io just underscores how interesting and exciting the moon is—and why it should be a top target for future space probes, Schulze-Makuch said. “Io is a unique kind of moon, very dynamic, and we should not dismiss it altogether.”

Read original article here

Juno probe snaps photo of Jupiter’s atmosphere, 2 big moons

A flyby of Jupiter by NASA’s Juno spacecraft has delivered a stunning image of the gas giant’s cloud tops and the moons Callisto and Io.

The newly released image was taken by the spacecraft’s JunoCam just under a year ago, on Nov. 29, 2021, as the Jupiter-exploring Juno completed its 38th close flyby of our solar system’s largest planet.

The image shows the arc of Jupiter’s horizon and the planet’s churning, rippling clouds, while also capturing the moons Io (above) and Callisto (below).

Photos: Jupiter, the solar system’s largest planet

The image was taken when Juno was about 8,700 miles (14,000 kilometers) above Jupiter’s cloud tops, at a latitude of about 69 degrees, traveling at a speed of about 123,000 mph (198,000 kph) relative to the planet, according to a NASA statement.

Citizen scientist Gerald Eichstädt used raw JunoCam data to make the original version of this image. Another citizen scientist, Thomas Thomopoulos, then further processed it, zooming in and making color enhancements, NASA stated.

Juno recently made a flyby of another one of Jupiter’s four big Galilean moons, the ice-covered, ocean world of Europa, returning the first close-up images of the moon in more than 20 years. Juno also got up close to the fourth Galilean moon, Ganymede, in April 2021, delivering impressive images of the solar system’s largest moon during that flyby.

The close approaches don’t stop there. The Juno spacecraft — which launched in 2011 and arrived at Jupiter in 2016 — is next scheduled to make flybys of the violently volcanic world of Io in December 2023 and February 2024.

NASA notes that JunoCam’s raw images are available for the public to peruse and process here (opens in new tab), with more information about NASA citizen science to be found here (opens in new tab).

Follow us on Twitter @Spacedotcom (opens in new tab) and on Facebook (opens in new tab). 



Read original article here

These sounds made from a flyby of Jupiter’s moon Europa are haunting

An eerie new video allows us to hear what NASA’s Juno spacecraft experienced as it made a flyby of Jupiter’s icy moon Europa last month.

The 11-second-long audio track expresses variations of plasma frequency, using data collected by Juno over 90 minutes as it made a flyby of Europa on Sept. 29. Converting this data into sound — data sonification — allows us to hear the variation of frequency of the plasma waves observed by Juno near Europa as the plasma density changes. 

The plasma wave detections were made by the Juno Waves instrument in the frequency range of 50 to 150 kHz and the data collected during the flyby will help reveal more about Europa, according to a NASA statement

Related: Behold! Our closest view of Jupiter’s ocean moon Europa in 22 years

A view of Jupiter’s moon Europa captured by NASA’s Juno mission during its Sept. 29 close flyby at the moon. The spacecraft was 945 miles (1,500 kilometers) above the moon’s surface when the image was taken. (Image credit: Image data: NASA/JPL-Caltech/SwRI/MSSS. Image processing by Björn Jónsson CC BY-NC-SA 2.0)

The Waves instrument was designed to help scientists understand the interactions between Jupiter’s atmosphere, magnetic field and magnetosphere, as well as to understand Jupiter‘s auroras. 

But it can also be useful for learning more about Europa, which scientists think has a large subsurface ocean. Measuring the changes in density of charged particle gas, or plasma, surrounding Europa can provide insight into the moon’s magnetic field and, in turn, clues about the structure of the moon’s interior. 

The emissions reveal that plasma density near Europa ranged from about 60 to 120 electrons per cubic centimeter, but with a very brief peak near 300 electrons per cubic centimeter right at Juno’s closest approach to Europa, according to NASA.

Juno entered orbit around Jupiter in July 2016. The flyby is part of an extended mission that began in 2021. Juno made a flyby of Ganymede in June 2021 for which NASA also created a cool audio clip.

Juno will also fly by the volcanically active Io, the closest-in of the Galilean moons, in late 2023 and early 2024 as Jupiter’s immense gravity pulls Juno closer to the planet with each orbit of the spacecraft.

Follow us on Twitter @Spacedotcom and on Facebook. 



Read original article here

NASA Says Shallow Lakes in the Icy Crust of Jupiter’s Moon Europa Could Erupt

This illustration depicts a plume of water vapor that could potentially be emitted from the icy surface of Jupiter’s moon Europa. New research sheds light on what plumes, if they do exist, could reveal about lakes that may be inside the moon’s crust. Credit: NASA/ESA/K. Retherford/SWRI

New scientific research makes hypotheses that

Europa is considered one of the most promising places in our solar system to find present-day environments suitable for some form of life beyond Earth.

Scientists are almost certain that a salty-water ocean thought to contain twice as much water as Earth’s oceans combined is hidden beneath the icy surface of Europa. And like Earth, Europa is thought to also contain a rocky mantle and iron core.

Very strong evidence suggests Europa’s ocean is in contact with rock. ​ This is significant because life as we know it requires three essential “ingredients”: liquid water, an energy source, and organic compounds to use as the building blocks for biological processes.

Europa could have all three of these ingredients. And there would have been plenty of time for life to begin and evolve there, as its ocean may have existed for the whole age of the solar system.

However, scientists think the ocean isn’t the only water on Europa. Based on observations from NASA’s Galileo orbiter, they believe the moon’s icy shell could contain salty liquid reservoirs – some of them close to the surface of the ice and some many miles below.

The more scientists understand about the water that Europa may be holding, the better chance they will know where to look for it when NASA sends Europa Clipper in 2024 to conduct a detailed investigation. The spacecraft will orbit Jupiter and use its suite of sophisticated instruments to gather science data as it flies by the moon about 50 times.

Now, research is helping scientists better understand what the subsurface lakes in Europa may look like and how they behave. A key finding in a paper published recently in Planetary Science Journal supports the longstanding idea that water could potentially erupt above the surface of Europa either as plumes of vapor or as cryovolcanic activity (think: flowing, slushy ice rather than molten lava).

The computer modeling in the paper goes further, showing that if there are eruptions on Europa, they likely come from shallow, wide lakes embedded in the ice and not from the global ocean far below.

“We demonstrated that plumes or cryolava flows could mean there are shallow liquid reservoirs below, which Europa Clipper would be able to detect,” said Elodie Lesage, lead author of the research and Europa scientist at NASA’s Jet Propulsion Laboratory (

This color view of Jupiter’s moon Europa was captured by NASA’s Galileo spacecraft in the late 1990s. Scientists are studying processes that affect the moon’s surface as they prepare to explore the icy body. Credit: NASA/JPL-Caltech/SETI Institute

Different Depths, Different Ice

Lesage’s computer modeling lays out a blueprint for what scientists might find inside the ice if they were to observe eruptions at the surface. According to her models, they likely would detect reservoirs relatively close to the surface, in the upper 2.5 to 5 miles (4 to 8 kilometers) of the crust, where the ice is coldest and most brittle.

That’s because the subsurface ice there doesn’t allow for expansion: As the pockets of water freeze and expand, they could break the surrounding ice and trigger eruptions, much like a can of soda in a freezer explodes. And pockets of water that do burst through would likely be wide and flat like pancakes.

Reservoirs deeper in the ice layer – with floors more than 5 miles (8 kilometers) below the crust – would push against warmer ice surrounding them as they expand. That ice is soft enough to act as a cushion, absorbing the pressure rather than bursting. Rather than acting like a can of soda, these pockets of water would behave more like a liquid-filled balloon, where the balloon simply stretches as the liquid within it freezes and expands.

Sensing Firsthand

Scientists on the Europa Clipper mission can use this research when the spacecraft arrives at Europa in 2030. For example, the radar instrument – called Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON) – is one of the key instruments that will be used to look for water pockets in the ice.

“The new work shows that water bodies in the shallow subsurface could be unstable if stresses exceed the strength of the ice and could be associated with plumes rising above the surface,” said Don Blankenship, of the University of Texas Institute for Geophysics in Austin, Texas, who leads the radar instrument team. “That means REASON could be able to see water bodies in the same places that you see plumes.”

Europa Clipper will carry other instruments that will be able to test the theories of the new research. The science cameras will be able to make high-resolution color and stereoscopic images of Europa; the thermal emission imager will use an infrared camera to map Europa’s temperatures and find clues about geologic activity – including cryovolcanism. If plumes are erupting, they could be observable by the ultraviolet spectrograph, the instrument that analyzes ultraviolet light.

Reference: “Simulation of Freezing Cryomagma Reservoirs in Viscoelastic Ice Shells” by Elodie Lesage, Hélène Massol, Samuel M. Howell and Frédéric Schmidt, 21 July 2022, Planetary Science Journal.
DOI: 10.3847/PSJ/ac75bf

More About the Mission

Missions such as Europa Clipper contribute to the field of astrobiology. This is an interdisciplinary research field that studies the conditions of distant worlds that could harbor life as we know it. Although Europa Clipper is not a life-detection mission, it will conduct a detailed exploration of Europa and investigate whether the icy moon, with its subsurface ocean, has the capability to support life. Understanding Europa’s habitability will help scientists better understand how life developed on Earth and the potential for finding life beyond our planet.

Managed by the California Institute of Technology (Caltech) in Pasadena, California, JPL leads the development of the Europa Clipper mission in partnership with APL for NASA’s Science Mission Directorate in Washington. APL designed the main spacecraft body in collaboration with JPL and NASA’s Goddard Space Flight Center in Greenbelt, Maryland. The Planetary Missions Program Office at NASA’s Marshall Space Flight Center in Huntsville, Alabama, executes program management of the Europa Clipper mission.



Read original article here