Tag Archives: Immune

Experimental Type 1 Diabetes Drug Shields Pancreas Cells from the Usual Crippling Immune System Attack – Good News Network

  1. Experimental Type 1 Diabetes Drug Shields Pancreas Cells from the Usual Crippling Immune System Attack Good News Network
  2. Experimental antibody drug prevents and even reverses diabetes onset New Atlas
  3. Immune-Targeting Drug Improves Insulin Production and Alters Autoimmune Response but Does Not Delay Type 1 Diabetes – NIDDK National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
  4. Another Monoclonal Antibody Delays Diabetes in Mouse Study Managed Healthcare Executive
  5. Scientists develop experimental type 1 diabetes drug which shields insulin-making cells from immune system attack Diabetes.co.uk

Read original article here

Does getting COVID really make your immune system worse?

When the immune system goes awry, it’s bad news. A wonky immune system might mean that you’re more likely to catch colds and flus, or be infected by other pathogens—and less likely to shake them off. It might mean that your body fails to detect and destroy growing tumors. It might even mean that the body turns against itself, leading to chronic autoimmune conditions like arthritis or Crohn’s disease. The fallout of immune system dysfunction on the human body is widespread and unpredictable—which is why it was so concerning in 2020 when evidence began to amass that COVID-19 seemed to be disrupting human immunology. So much so, in fact, that John Wherry, director of the Penn Medicine Immune Health Institute, summed it up this way to Kaiser Health News: “COVID is deranging the immune system.”

Most of the early immunological evidence—the evidence that Wherry was referring to—came from patients who died or suffered severe COVID. Now, three years of infections and immunizations later, severe COVID is getting mercifully less common; a brush with the virus may well feel unremarkable. And a new idea about how COVID can affect immunity has emerged: that even mild infections routinely cause consequential damage to our bodies’ defenses. This quiet degradation was memorably termed “immunity theft” by one evolutionary biologist speculating on why this fall’s respiratory virus season seemed more severe than usual.

There are plenty of reasons to not want to get COVID over and over, but the prospect of an increasingly damaged immune system is a particularly compelling one. Throughout the pandemic, scientific evidence has mounted that mild COVID infections may be doing something to our immune systems—prompting many on social media to hyperbolically describe COVID as “airborne AIDS.” But the lessons that scientists are drawing from their research are nuanced—and the larger picture says more about the sturdiness of our collective immunity than anything else.

There are a few ways scientists can probe COVID’s impact on immune systems. One is to investigate how well the immune system can rally against a second go-round with SARS-CoV-2. At the start of the pandemic, Shane Crotty, of the La Jolla Institute of Immunology, published some of the first papers looking at the immune response to COVID. “There was a lot of concern about how strange it might look,” he said. But really, “it looks as we would largely expect for a respiratory viral infection.” Antibodies recognize and subdue the virus, while immune memory cells linger about, ready to gear up for the next infection. A similar response is seen after vaccination. Because of this robust immune response, SARS-CoV-2 infections are now, on average, shorter and milder. So far this year, COVID hospitalizations have not surged, despite high rates of infection. Some of this attenuation may be due to a meeker (arguably) omicron variant, but it’s more likely because, with respect to fending off COVID at least, our immune systems are working just as they’re supposed to.

But there’s another way to think about COVID’s immunological impact. What if SARS-CoV-2 infection fortifies our immune systems in very specific ways such that we can stave off severe COVID, but precipitates subtler, long-term immunological changes that leave us more vulnerable to other infections or even chronic disease? The data here is murkier.

Scientists know that during severe cases of COVID, things go immunologically haywire. A study from the pandemic’s early days, in January of 2020, profiled 41 hospitalized COVID patients in China and found that 63 percent of them had low numbers of lymphocytes, a critical type of disease-fighting white blood cell. A postmortem study found that patients who had died of COVID lacked germinal centers, which teach immune cells to mount a long-lasting response to infection. A few studies—which looked at hospitalized patients, and cells in petri dishes—have claimed that SARS-CoV-2 can directly infect immune cells, and others have found that the virus can stir up “autoantibodies,” or immunological turncoats that blitz the patient’s own proteins and cells. Wherry is a co-author on one such study; this is the kind of “deranging” he was talking about. Immune system derangement appears to be what can make some severe cases of COVID so horrible.

Since then, many other studies have unearthed immunological oddities with worrisome names like “T cell exhaustion” and “dendritic cell deficiencies”; sometimes the oddities are seen in patients with just mild COVID infections. These studies can fuel scary-sounding headlines (“Is COVID prematurely aging our immune systems?”). Their top-line results are often circulated as validation of widespread and ongoing immune dysregulation. But that’s not really true.

To understand why these studies aren’t validation requires going a bit in the methodological weeds. In most of them, researchers take a group of patients who suffered from COVID—often a mix of mild, moderate, and severe cases—and find a group of “matched controls,” or uninfected people with similar health and demographic profiles. Then, they train the power of modern biotechnology on the immune system, scanning hundreds or thousands of cells, genes, and molecules for anything that looks different in COVID patients vs. their never-infected counterparts. The data sets are huge, and sophisticated machine-learning algorithms are often deployed to sift signal from noise.

These are impressive techniques, but it’s important to keep in mind the purpose of these studies, and their limitations. Most are conducted in small groups of patients who may or may not be representative of the population as a whole. And from the small group, researchers collect lots and lots of data. This style of research is exploratory, designed to pick out avenues for future and more robust study. Some of the leads may pan out, but many—if not most—findings will just end up being natural variation between people’s bodies, popping up by chance in those who had COVID.

Few, if any, studies have information on the state of patients’ own immune systems before they were infected with COVID, making an apples-to-apples comparison of what COVID does to a particular person’s immune system impossible. Robust longitudinal data starting prior to the pandemic would show “whether we’ve seen large-scale changes in immune fitness,” Wherry told me—and we just don’t have it. In its absence, “the evidence of a long-term impact on the immune system in fully recovered COVID patients, whether mild or severe, is really pretty thin.”

“There are some diseases where there is a clear immune signature that would make me worried,” Crotty, the immunologist at the La Jolla Institute, said. “For example, if you catch measles, you end up more susceptible to other infections for several months. But I haven’t seen anything in our data or other studies that makes me worried about long-term impacts on immunity to other infections.”

Even if the laboratory studies aren’t conclusive, there is some real-world evidence that mild COVID infections can throw the immune system out of whack. The latest is a large observational study posted on a preprint server just last week by German researchers. At first glance, the findings are scary—they found a whopping 43 percent increase in the onset of autoimmune disease in COVID patients compared with noninfected controls. But it’s important to put that number in context. First, the infections were in 2020, before vaccines. Second, that 43 percent is relative risk. In absolute terms, the study found that 1.1 percent of people developed autoimmune disease after catching COVID; 0.8 percent of controls developed autoimmune disease during the same period. That’s a 0.3 percent difference. The study size was huge, so that small difference could very well be real and a cause for concern on a population level. (The study has not yet been peer-reviewed.) But it’s still a fairly rare outcome.

Less rare is long COVID, and it’s possible immune dysfunction could be linked to this worrisome condition. Scientists who have looked for obvious signs of how immunological dysfunction produces long COVID symptoms haven’t found it. “If there’s chronic immune activation that’s damaging tissue to produce the symptoms, then we should be able to detect that tissue damage. And that was what we couldn’t do,” said Michael Sneller, an infectious-disease specialist at the National Institute of Allergy and Infectious Diseases who is running one of the more comprehensive longitudinal studies on long COVID patients.

But long COVID is far from solved, so scientists are still probing for clues about how and why it comes about—this is where some of that exploratory research based on small sample sizes and broad swaths of data may prove valuable.

In the late 2000s, researchers in Vietnam found that infection with the typhoid bacterium left an imprint on the immune system for at least a year. When COVID hit, David Lynn, a co-author on that paper and a professor at the South Australian Health and Medical Research Institute and Flinders University, put together a grant application to determine whether SARS-CoV-2 did the same. Lynn and his team followed 69 patients in Australia with COVID infections ranging from mild to very severe. In contrast to standard clinical tests, Lynn used newer, sophisticated molecular techniques that can pick up much subtler signals. With a more fine-toothed comb, Lynn was able to find that almost every patient showed signs of a perturbed immune system at the molecular level, compared with healthy controls—but in most patients, these perturbations faded away after a few months. In a third of them, the immune system remained in a state of dysregulation. Many of those patients were later identified as having long COVID. “That was quite remarkable to us,” Lynn told me. Other studies back up Lynn’s findings, including one study posted on a preprint server by renowned Yale immunologist Akiko Iwasaki, whose team was able to predict which patients had developed long COVID by profiling immunological data at the molecular level alone.

One possible explanation for this small-scale perturbation is that long COVID’s symptoms could be the result of a hidden confrontation between the immune system and active virus ensconced deep in the body’s tissues—like combat among soldiers in remote outposts who don’t yet know the war is over. Other explanations include autoantibodies, reactivation of other latent viruses, or difficult-to-detect tissue damage from microclots. But these hypotheses remain speculation. And these newer molecular techniques haven’t been as widely used to investigate the immunology of other pathogens, meaning it’s unclear whether SARS-CoV-2 is even that exceptional. “I think all of the studies, including ours, are just giving hints to what’s going on,” Lynn said. “I don’t think we have a smoking gun at the moment.”

Importantly, since none of these studies have pre-pandemic snapshots of participant immune systems, it can’t be ruled out that patients may be more susceptible to developing long COVID if they already had a less-than-healthy immune system, muddling cause and consequence. Chansavath Phetsouphanh, an immunologist at the University of New South Wales’ Kirby Institute, was lead author on an Australian study that found hints of immunological dysfunction at least eight months after infection, particularly in patients with long COVID. “We know there are preexisting medical conditions that can make individuals more susceptible to developing long COVID,” Phetsouphanh said. This is a clue that “there may already be dysregulation of the immune system prior to getting infected.” As scientists work to untangle cause and effect, their research highlights the importance of health care and public health measures for people with compromised immune systems, whatever the cause.

At this point, the best we can say is that sensitive scientific tests can detect differences in the immune systems of people infected with SARS-CoV-2 compared with the ever-dwindling cohort of those who have never been infected at all. Whether these differences—which vary from study to study—add up to a molecular “immune signature” of COVID remains to be seen. Any clues may be particularly valuable in untangling why a subset of patients have symptoms that last a few months or longer. But to conclude that these detectable differences translate to real-world consequences is overreach. Further, to claim that COVID is destroying all of our immune systems, or is inflicting the direct and intense immune damage of an HIV infection, is absurd.

Wherry, the Penn Medicine immunologist, told me this—I think it’s worth laying out the quote in full:

We’re not seeing evidence that this one virus has changed our immune system’s ability to keep us healthy on a large scale. There are 7 billion people on the planet who are doing fairly well. And we’re not seeing opportunistic infections, we’re not seeing huge increases in cancers that need immune surveillance, we’re just not seeing the kinds of things that we saw in other settings where the immune system was compromised, or dysregulated, because of an infectious disease, or because of toxins, or because of radiation, that we’ve seen in a variety of human events over the past 100 years.

To claim that COVID could potentially discombobulate immune systems isn’t to peddle pseudoscience. People respond to infections very differently, and it’s worth continuing research into what COVID might be doing to some people’s ability to fight future infections, or how it might trigger chronic autoimmune disease. Even if long-lasting immune dysfunction develops in only a very small percentage of people, that still means a lot of individual suffering and a major toll on families and communities. In addition, noted Lynn, from a public health perspective, “that is a large additional burden on health-care systems around the world.” Further, the intense focus on the post-viral immunological effects of SARS-CoV-2 infection may shed light on what can happen after other infections—the possibility of long-lasting immunological changes in response to pathogens may be more common than previously thought. But researchers emphasize that even if COVID routinely tinkers with the immune system, our body’s defenses are stubbornly resilient. “Think of the immune system like a Boeing aircraft,” said Lynn. “For it to crash, you need multiple things to go wrong. Just one, or even a few things, is unlikely to be sufficient to bring the immune system down.”



Read original article here

New COVID Variants Are Escaping the Immune System. Here’s What That Means.

BA.5, BQ.1.1, and XBB? It’s no wonder people are struggling to keep all the circulating variants of COVID-19 straight right now. Whether you want to call them “alphabet soup,” “Scrabble,” or “Kraken,” we’ve been reminded time and again that it’s not the name of the subvariant that matters, but rather the way it interacts with our immune systems. And as we enter into our fourth year with COVID-19, scientists are most concerned with how well prior infections, vaccinations, and boosters can protect us against emerging variants of the virus.

The answers are starting to roll in—and they’re not looking great for us. In a letter published on Jan. 18 in The New England Journal of Medicine, researchers from Beth Israel Deaconess Medical Center and Los Alamos National Laboratory detail the nasty abilities of variants BQ.1.1 and XBB.1 to escape incapacitation from COVID-specific antibodies. This is cause for concern because as the authors wrote, these variants “may reduce the efficacy of current mRNA vaccines.”

Before Aug. 31 in the U.S., available COVID-19 boosters were monovalent, meaning they contained viral genetic material from one strain of the virus. The updated boosters are bivalent and were created with genetic material from the original COVID-19 strain as well as Omicron variant strains with the hope of offering better protection against new and emerging variants.

Unfortunately, these early data seem to show that two of the newest variants can dodge even the bivalent boosters. In their study, the researchers took serum samples from 16 people who received a monovalent booster in 2021, 15 who received a monovalent booster in 2022, and 18 people who received a bivalent booster in September 2022. In all three cohorts, the concentration of neutralizing antibodies—which immobilize copies of the virus and prevent them from infecting cells—fighting the original Wuhan strain shot up after participants received boosters, from the hundreds or thousands to the tens of thousands.

But their immune response against some of the newest viral variants was severely diminished, even compared to ones that came directly before. The authors found that neutralizing antibody concentrations to variants BQ.1.1 and XBB.1 were between 53 and 232 times lower than those to the original strain of COVID-19, depending on the booster received. These variants were even better than a recent Omicron variant at evading the immune system and escaping neutralizing antibodies.

On Jan. 11, the World Health Organization released a risk assessment about XBB.1.5, writing that BQ and XBB variants are “the most antibody-resistant variants to date” but cautioning that “[t]here is currently no data on real world vaccine effectiveness against severe disease or death” for these variants.

It’s clear that these variants aren’t good news, but future research is needed to suss out just how bad they will turn out to be. This study is one early indication that as sick as we might be of the COVID-19 pandemic, we aren’t out of the woods just yet.

Read original article here

6 Superfoods to Eat for a Strong, Healthy Immune System

Immunity is important all year, every year, but it seems to have become an even hotter health topic than ever over the last few years. And it’s always of particular interest when cold and flu season rolls around (and lasts through the winter—and sometimes even early spring). Fortunately, it’s possible to protect yourself from sniffles and sick days by maintaining a healthy immune system on your own through everyday habits. One of the best lifelong ways to support your immunity is through nutrition and smart eating habits. Noshing on immune-boosting foods (and sipping on certain drinks) isn’t just effective, but easier and more delicious than you think.


Why Nutrition Matters for Immunity

If you’re on a mission to optimize immune function, your diet is a great place to start. Nutrition is a major factor affecting the immune system and, ultimately, how well the body is able to protect itself against harmful germs. Immune cells require certain nutrients to function properly, explains Gary E. Deng, MD, PhD, integrative medicine specialist at Memorial Sloan Kettering Cancer Center. These nutrients may work by triggering critical cellular reactions, providing energy for immune cells or fighting harmful molecules—just to name a few mechanisms, according to a 2019 article in the journal Nutrients.

Eat more plants, probiotics, and protein.

But what does eating for immunity look like, exactly? Luckily, according to the Academy of Nutrition and Dietetics, the best eating plan for a robust immune system aligns extremely well with familiar nutrition advice, and should focus especially on plenty of whole plants, most notably fruits and vegetables. Such plant foods offer fiber, vitamins, minerals, and antioxidants, which are all essential for fueling your immune cells. An immunity-boosting diet also calls for foods with probiotics (those “good” bacteria for a healthy gut microbiome) and lean protein, which both animal and plant sources can provide.

Eat less processed, packaged, and ultra-refined foods.

Immune system nutrition does involve eating less of certain foods, too. These less-advantageous eats generally include ultra-processed and refined foods, which are often stripped of immunity-supporting nutrients (e.g. natural fiber, phytochemicals, vitamins, and minerals). Not only do they fail to provide what’s needed, but they can also actively undermine the immune system when eaten in excess. They can cause oxidative stress and contribute to inflammation, prompting your body to use its supply of antioxidants to fight those processes, rather than being ready and able to fight the microscopic intruders that cause sickness, says registered dietitian Rhyan Geiger, RDN. Don’t worry, you can still enjoy ice cream and french fries! But your system will thank you if these treats become a lower priority in your everyday eating habits.

And, of course, what you eat and drink is only one part of enhancing immunity. Other important habits include managing stress, getting enough sleep (i.e., seven to eight hours for most adults), and staying physically active. 

When it comes to daily meals and grocery shopping, here are the top immune-boosting ingredients to reach for.


The Best Foods for Immunity


Leafy Greens

Anna Williams


In addition to supporting heart health and brain function, leafy greens like kale, spinach, Swiss chard, and arugula are some of the best foods to eat on repeat. “Leafy greens are rich in micronutrients, especially vitamin C and vitamin K, which [are essential for promoting] a healthy immune system” Geiger says. Other pro-immunity nutrients in leafy greens include beta-carotene and folate, or vitamin B9. To get your fill of leafy greens, aim for at least two cups per day, she says. And remember, you’re not limited to salads by any stretch: Try making a refreshing green smoothie or adding a handful of greens into soups, stews, omelets, pasta dishes, and grain bowls.




Probiotic Foods

Victor Protasio


When it comes to gut health, probiotic foods such as tempeh, yogurt, kefir, kimchi, and sauerkraut steal the show. And since gut function is connected to immunity, these probiotic-rich choices are multifunctional superfoods. The “good” bacteria in probiotic foods strengthen the immune cells in the intestinal lining, Dr. Deng explains, adding that these microbes also metabolize foods to generate nutrients that otherwise wouldn’t be available to the body. This ensures your immune system gets the nutrients it needs to bring its A-game. For optimal immune-supporting benefits, Dr. Deng recommends adding probiotic foods to your diet two to three times a week. Start your morning with Greek yogurt with chopped nuts and berries; snack on naturally fermented pickles; or top your fish tacos with sauerkraut.






Berries

Greg DuPree


When it comes to immune-boosting foods, you can’t go wrong with berries such as strawberries, blueberries, and raspberries. According to Dr. Deng, berries are high in antioxidants, which help protect healthy cells from damaging molecules. Berries also offer vitamin C (especially strawberries), an essential immunity nutrient, and fiber, which support the “good” bacteria in the digestive tract, he adds. Aim for two half-cup servings of berries per week, which is easy to do with delicious eats like berry baked oatmeal and smoothie bowls. Or you can always munch on them by the handful straight from the carton in the fridge.



Lean Protein

Caitlin Bensel


Although vitamins and antioxidants we get from plant foods are often associated with immune function, protein is just as crucial. “Protein [helps] the body repair tissues and muscle, build antibodies, and promote the synthesis of amino acids needed for immune function,” Geiger says. For the healthiest option, go for lean proteins, which are low in saturated fat. (This type of fat can raise your LDL or “bad” cholesterol when consumed in high amounts). Examples of lean protein sources include tofu, beans, lentils, skinless chicken or turkey, and white-fleshed fish like tilapia.




Green Tea

Grace Elkus


You can sip your way to better immunity, too. Delightfully refreshing and earthy, green tea is a must-have in your tea drawer. “Green tea has a variety of antioxidants, including [a] plant compound called epigallocatechin gallate,” Geiger explains. “This compound can help reduce inflammation in the body and improve function.” Enjoy green tea hot or cold, or add it to a smoothie for a tasty twist.


Read original article here

Alzheimer’s Disease Researchers Study Gene Associated With the Brain’s Immune Cells

Summary: Reduction of the INPP5D gene variant found in the brain’s microglia could help to diminish the risk of late-onset Alzheimer’s disease.

Source: Indiana University

Indiana University School of Medicine researchers are studying how the reduction of a gene variant found in the brain’s immune cells could diminish the risk of late-onset Alzheimer’s disease.

The research team, led by Adrian Oblak, Ph.D., assistant professor of radiology and imaging sciences, and Peter Bor-Chian Lin, a Ph.D. candidate in the Medical Neuroscience Graduate Program at Stark Neurosciences Research Institute, recently published their findings in Alzheimer’s & Dementia.

They focused their investigation on INPP5D, a microglia-specific gene that has been shown to increase the risk for developing late-onset Alzheimer’s disease. Microglia are the brain’s immune cells and there are multiple microglial genes associated with neurodegeneration.

Oblak said the team’s previous data revealed that elevated levels of INPP5D in Alzheimer’s disease lab models resulted in increased plaque deposition. Knowing this, they aimed to understand how reducing expression of INPP5D might regulate disease pathogenesis.

Using models in the lab, the researchers reduced the expression of the gene by at least 50%—called haplodeficiency—rather than completely knocking out the expression of the gene to mimic the treatment of pharmacological inhibitors targeting INPP5D as therapeutic strategies.

Microglia are the brain’s immune cells and there are multiple microglial genes associated with neurodegeneration. Image is in the public domain

“INPP5D deficiency increases amyloid uptake and plaque engagement in microglia,” Oblak said. “Furthermore, inhibiting the gene regulates microglial functions and mitigates amyloid pathology that are likely mediated by TREM2-SYK signaling pathway activation.”

The gene deficiency also led to the preservation of cognitive function in the lab models. By reducing the expression of the gene in the brain, it created a less neurotoxic environment and improved the movement of microglia—which act as the first line of defense against viruses, toxic materials and damaged neurons—to clear amyloid deposits and plaques.

“These findings suggest that mitigating the function of INPP5D can result in a protective response by diminishing disease risk and mitigating the effect of amyloid beta induced pathogenesis,” Lin said.

About this Alzheimer’s disease and genetics research news

Author: Press Office
Source: Indiana University
Contact: Press Office – Indiana University
Image: The image is in the public domain

Original Research: Open access.
“INPP5D deficiency attenuates amyloid pathology in a mouse model of Alzheimer’s disease” by Peter Bor‐Chian Lin et al. Alzheimer’s & Dementia

See also


Abstract

INPP5D deficiency attenuates amyloid pathology in a mouse model of Alzheimer’s disease

Introduction

Inositol polyphosphate-5-phosphatase (INPP5D) is a microglia-enriched lipid phosphatase in the central nervous system. A non-coding variant (rs35349669) in INPP5D increases the risk for Alzheimer’s disease (AD), and elevated INPP5D expression is associated with increased plaque deposition. INPP5D negatively regulates signaling via several microglial cell surface receptors, including triggering receptor expressed on myeloid cells 2 (TREM2); however, the impact of INPP5D inhibition on AD pathology remains unclear.

Methods

We used the 5xFAD mouse model of amyloidosis to assess how Inpp5d haplodeficiency regulates amyloid pathogenesis.

Results

Inpp5d haplodeficiency perturbs the microglial intracellular signaling pathways regulating the immune response, including phagocytosis and clearing of amyloid beta (Aβ). It is important to note that Inpp5d haploinsufficiency leads to the preservation of cognitive function. Spatial transcriptomic analysis revealed that pathways altered by Inpp5d haploinsufficiency are related to synaptic regulation and immune cell activation.

Conclusion

These data demonstrate that Inpp5d haplodeficiency enhances microglial functions by increasing plaque clearance and preserves cognitive abilities in 5xFAD mice. Inhibition of INPP5D is a potential therapeutic strategy for AD.

Read original article here

Newfound ‘protective shield’ in the brain is like a watchtower for immune cells

A newfound “protective shield” in the brain helps clear waste from the organ and serves as a sentry tower for watchful immune cells that monitor for signs of infection, scientists reported in a study of mouse and human brains.

The study, published Thursday (Jan. 5) in the journal Science (opens in new tab), describes a thin sheet of tissue that measures only a few cells thick and splits an overarching compartment in the brain called the subarachnoid space into two halves horizontally. Several distinct layers of tissue sit between the inner surface of the skull and the outer surface of the brain, and the subarachnoid space lies between two of those tissue layers. The space itself isn’t empty; it contains a spiderweb-like network of connective tissue that stretches between the neighboring tissue layers, major blood vessels, and a colorless fluid called cerebrospinal fluid (CSF), according to the online medical resource StatPearls (opens in new tab).

The CSF surrounding the brain acts as a shock absorber, similar to the cushioning inside a bike helmet. However, this fluid doesn’t hang out only in the subarachnoid space. Instead, it flows through various tubes and compartments in and around the brain, delivering nutrients to the organ while flushing its waste products out into the bloodstream. The newly discovered “shield” likely helps control these important functions of CSF, the study authors concluded.

“The discovery of a new anatomic structure that segregates and helps control the flow of cerebrospinal fluid in and around the brain now provides us much greater appreciation of the sophisticated role that CSF plays not only in transporting and removing waste from the brain, but also in supporting its immune defenses,” senior author Dr. Maiken Nedergaard (opens in new tab), co-director of the Center for Translational Neuromedicine at University of Rochester and the University of Copenhagen, said in a statement (opens in new tab).

Related: How many organs are in the human body? 

The shield, which the authors call the subarachnoid lymphatic-like membrane (SLYM), divides the subarachnoid space into an upper compartment, closer to the skull, and a lower compartment, closer to the brain. Experiments in mice suggested that the thin membrane blocks most proteins from crossing from one compartment into the other, although it allows very small molecules to pass through. (The team also found evidence of the SLYM in tissue samples from adult human brains.)

The newfound membrane may help separate fresh CSF from contaminated CSF containing waste and potentially harmful proteins, such as the amyloid plaques associated with Alzheimer’s disease, and help direct these substances out of the brain, the authors theorized. Understanding how this works in a healthy brain and what happens if the shield incurs damage “will require more detailed studies,” they noted. 

The study also revealed that a large number and variety of immune cells can be embedded in the shield, and showed that these immune cells increase in number in response to inflammation and advanced aging in mice. This finding hints that the SLYM serves as a site of “immunological surveillance,” from which immune cells monitor the CSF for signs of infection and inflammation and can summon additional defenses as needed, the authors concluded. 

However, if the SLYM ruptures, immune cells from the skull’s bone marrow can then flood the surface of the brain, an area they normally wouldn’t reach. This finding could help explain why traumatic brain injuries often trigger prolonged inflammation of the brain and disrupt the normal flow of CSF through and around the organ, the authors suggested, although these hypotheses will have to be tested. 

Traumatic brain injuries are also linked to an increased risk of developing Alzheimer’s down the line, the authors added, and this increased risk may be partially explained by the trauma introducing new cracks in the brain’s protective shield — the SLYM, the authors theorize.

Read original article here

omicron XBB.1.5 is immune evasive, binds better to cells

Gilnature | Istock | Getty Images

The Covid omicron XBB.1.5 variant is rapidly becoming dominant in the U.S. because it is highly immune evasive and appears more effective at binding to cells than related subvariants, scientists say.

XBB.1.5 now represents about 41% of new cases nationwide in the U.S., nearly doubling in prevalence over the past week, according to the data published Friday by the Centers for Disease Control and Prevention. The subvariant more than doubled as a share of cases every week through Dec. 24. In the past week, it nearly doubled from 21.7% prevalence.

Scientists and public health officials have been closely monitoring the XBB subvariant family for months because the strains have many mutations that could render the Covid-19 vaccines, including the omicron boosters, less effective and cause even more breakthrough infections.

XBB was first identified in India in August. It quickly become dominant there, as well as in Singapore. It has since evolved into a family of subvariants including XBB.1 and XBB.1.5.

Andrew Pekosz, a virologist at Johns Hopkins University, said XBB.1.5 is different from its family members because it has an additional mutation that makes it bind better to cells.

“The virus needs to bind tightly to cells to be more efficient at getting in and that could help the virus be a little bit more efficient at infecting people,” Pekosz said.

Yunlong Richard Cao, a scientist and assistant professor at Peking University, published data on Twitter Tuesday that indicated XBB.1.5 not only evades protective antibodies as effectively as the XBB.1 variant, which was highly immune evasive, but also is better at binding to cells through a key receptor.

Scientists at Columbia University, in a study published earlier this month in the journal Cell, warned that the rise of subvariants such as XBB could “further compromise the efficacy of current COVID-19 vaccines and result in a surge of breakthrough infections as well as re-infections.”

The XBB subvariants are also resistant to Evusheld, an antibody cocktail that many people with weak immune systems rely on for protection against Covid infection because they don’t mount a strong response to the vaccines.

The scientists described the resistance of the XBB subvariants to antibodies from vaccination and infection as “alarming.” The XBB subvariants were even more effective at dodging protection from the omicron boosters than the BQ subvariants, which are also highly immune evasive, the scientists found.

CNBC Health & Science

Read CNBC’s latest global health coverage:

Dr. David Ho, an author on the Columbia study, agreed with the other scientists that XBB.1.5 probably has a growth advantage because it binds better to cells than its XBB relatives. Ho also said XBB.1.5 is about as immune evasive as XBB and XBB.1, which were two of the subvariants most resistant to protective antibodies from infection and vaccination so far.

Dr. Anthony Fauci, who is leaving his role as White House chief medical advisor, has previously said that the XBB subvariants reduce the protection the boosters provide against infection “multifold.”

“You could expect some protection, but not the optimal protection,” Fauci told reporters during a White House briefing in November.

Fauci said he was encouraged by the case of Singapore, which had a major surge of infections from XBB but did not see hospitalizations rise at the same rate. Pekosz said XBB.1.5, in combination with holiday travel, could cause cases to rise in the U.S. But he said the boosters appear to be preventing severe disease.

“It does look like the vaccine, the bivalent booster is providing continued protection against hospitalization with these variants,” Pekosz said. “It really emphasizes the need to get a booster particularly into vulnerable populations to provide continued protection from severe disease with these new variants.”

Health officials in the U.S. have repeatedly called on the elderly in particular to make sure they are up to date on their vaccines and get treated with the antiviral Paxlovid if they have a breakthrough infection.

Read original article here

COVID Loss of Smell, Taste May Signal More Intense Immune Response

Losing one’s sense of smell and taste is perhaps one of the more bizarre symptoms of COVID-19. If it’s happened to you, you undoubtedly remember it: Waking up one morning, and suddenly discovering that your cup of coffee no longer tastes as bitter as it did before. If you were feeling up to it, you may have experimented during your isolation by dousing meals in hot sauce just to feel a faint tingle, or biting into a lemon or lime for a subtle acidity. Soon, however, the novelty would wear off, and you’d just hope your sense of smell would come back eventually.

Many respiratory infections disrupt a person’s sense of smell by creating inflammation in the nasal cavity, leading to sniffles, stuffy noses, and a hard time smelling. But SARS-CoV-2 takes its interference to a new level by entering into supporting cells in the nose and crossing the wires that connect the nose and brain.

That sounds pretty scary, and that side-effect may reveal the course of your infection and recovery. Researchers at Columbia University published a study in PLoS ONE on Wednesday that linked chemosensory disruption—the loss of smell or taste following a COVID infection—to a person’s immune reaction to the virus, the remnants of which can linger for months in their bloodstream. To do this, they measured the levels of antibodies of 306 people who donated convalescent plasma in the spring of 2020 following a self-reported COVID-19 infection.

They found that people who lost their sense of smell or taste were each about twice as likely as those who didn’t lose those senses to have high levels of IgG antibodies. These antibodies signify an immune response, and have also been shown to rise once a person has recovered from a COVID-19 infection, as well as following vaccination. Having higher levels of IgG antibodies isn’t necessarily better or worse than having lower levels, but the researchers noted that high antibody levels are characteristic of a severe bout of COVID-19.

We don’t know if this association would hold today—the patients sampled all reported a COVID-19 infection in early 2020, and new research has found that the rates of smell and taste loss are lower with newer COVID variants. The study participants were not followed over time, so there’s no way to know how these high antibody levels affected them, either in the persistence of their symptoms or upon re-exposure to the virus. Some people who lose their sense of smell or taste following a COVID-19 infection take months or longer to regain it; further research is needed to drill down to why this happens, and determine ways to return these senses to patients.

Still, the new findings add another wrinkle into our ongoing attempts to understand what COVID infection means in the long run—especially as we see reinfection rates rising higher and higher.

Read original article here

Harnessing the Brain’s Immune Cells to Stave off Alzheimer’s and Other Neurodegenerative Diseases

Summary: Researchers have identified a protein that could be leveraged to help microglia in the brain stave off Alzheimer’s and other neurodegenerative diseases.

Source: The Conversation

Many neurodegenerative diseases, or conditions that result from the loss of function or death of brain cells, remain largely untreatable. Most available treatments target just one of the multiple processes that can lead to neurodegeneration, which may not be effective in completely addressing disease symptoms or progress, if at all.

But what if researchers harnessed the brain’s inherent capabilities to cleanse and heal itself? My colleagues and I in the Lukens Lab at the University of Virginia believe that the brain’s own immune system may hold the key to neurodegenerative disease treatment. In our research, we found a protein that could possibly be leveraged to help the brain’s immune cells, or microglia, stave off Alzheimer’s disease.

Challenges in treating neurodegeneration

No available treatments for neurodegenerative diseases stop ongoing neurodegeneration while also helping affected areas in the body heal and recuperate.

In terms of failed treatments, Alzheimer’s disease is perhaps the most infamous of neurodegenerative diseases. Affecting more than 1 in 9 U.S. adults 65 and older, Alzheimer’s results from brain atrophy with the death of neurons and loss of the connections between them. These casualties contribute to memory and cognitive decline. Billions of dollars have been funneled into researching treatments for Alzheimer’s, but nearly every drug tested to date has failed in clinical trials.

Credit: Nature

Another common neurodegenerative disease in need of improved treatment options is multiple sclerosis. This autoimmune condition is caused by immune cells attacking the protective cover on neurons, known as myelin. Degrading myelin leads to communication difficulties between neurons and their connections with the rest of the body.

 Current treatments suppress the immune system and can have potentially debilitating side effects. Many of these treatment options fail to address the toxic effects of the myelin debris that accumulate in the nervous system, which can kill cells.

A new frontier in treating neurodegeneration

Microglia are immune cells masquerading as brain cells. In mice, microglia originate in the yolk sac of an embryo and then infiltrate the brain early in development. The origins and migration of microglia in people are still under study.

Microglia play important roles in healthy brain function. Like other immune cells, microglia respond rapidly to pathogens and damage. They help to clear injuries and mend afflicted tissue, and can also take an active role in fighting pathogens. Microglia can also regulate brain inflammation, a normal part of the immune response that can cause swelling and damage if left unchecked.

Microglia also support the health of other brain cells. For instance, they can release molecules that promote resilience, such as the protein BDNF, which is known to be beneficial for neuron survival and function.

Credit: Sci P

But the keystone feature of microglia are their astounding janitorial skills. Of all brain cell types, microglia possess an exquisite ability to clean up gunk in the brain, including the damaged myelin in multiple sclerosis, pieces of dead cells and amyloid beta, a toxic protein that is a hallmark of Alzheimer’s. They accomplish this by consuming and breaking down debris in their environment, effectively eating up the garbage surrounding them and their neighboring cells.

Given the many essential roles microglia serve to maintain brain function, these cells may possess the capacity to address multiple arms of neurodegeneration-related dysfunction. Moreover, as lifelong residents of the brain, microglia are already educated in the best practices of brain protection. These factors put microglia in the perfect position for researchers to leverage their inherent abilities to protect against neurodegeneration.

New data in both animal models and human patients points to a previously underappreciated role microglia also play in the development of neurodegenerative disease. Many genetic risk factors for diseases like Alzheimer’s and multiple sclerosis are strongly linked to abnormal microglia function. These findings support an accumulating number of animal studies suggesting that disruptions to microglial function may contribute to neurologic disease onset and severity.

This raises the next logical question: How can researchers harness microglia to protect the nervous system against neurodegeneration?

Engaging the magic of microglia

In our lab’s recent study, we keyed in on a crucial protein called SYK that microglia use to manipulate their response to neurodegeneration.

Our collaborators found that microglia dial up the activity of SYK when they encounter debris in their environment, such as amyloid beta in Alzheimer’s or myelin debris in multiple sclerosis. When we inhibited SYK function in microglia, we found that twice as much amyloid beta accumulated in Alzheimer’s mouse models and six times as much myelin debris in multiple sclerosis mouse models.

See also

Blocking SYK function in the microglia of Alzheimer’s mouse models also worsened neuronal health, indicated by increasing levels of toxic neuronal proteins and a surge in the number of dying neurons. This correlated with hastened cognitive decline, as the mice failed to learn a spatial memory test.

Similarly, impairing SYK in multiple sclerosis mouse models exacerbated motor dysfunction and hindered myelin repair. These findings indicate that microglia use SYK to protect the brain from neurodegeneration.

But how does SYK protect the nervous system against damage and degeneration? We found that microglia use SYK to migrate toward debris in the brain. It also helps microglia remove and destroy this debris by stimulating other proteins involved in cleanup processes. These jobs support the idea that SYK helps microglia protect the brain by charging them to remove toxic materials.

Finally, we wanted to figure out if we could leverage SYK to create “super microglia” that could help clean up debris before it makes neurodegeneration worse. When we gave mice a drug that boosted SYK function, we found that Alzheimer’s mouse models had lower levels of plaque accumulation in their brains one week after receiving the drug. This finding points to the potential of increasing microglia activity to treat Alzheimer’s disease.

Microglia are immune cells masquerading as brain cells. Image is in the public domain

The horizon of microglia treatments

Future studies will be necessary to see whether creating a super microglia cleanup crew to treat neurodegenerative diseases is beneficial in people. But our results suggest that microglia already play a key role in preventing neurodegenerative diseases by helping to remove toxic waste in the nervous system and promoting the healing of damaged areas.

It’s possible to have too much of a good thing, though. Excessive inflammation driven by microglia could make neurologic disease worse. We believe that equipping microglia with the proper instructions to carry out their beneficial functions without causing further damage could one day help treat and prevent neurodegenerative disease.

Funding: This work was supported by funding from the NIH (1RF1AG071996-01, R01NS106383), The Alzheimer’s Association (ADSF-21-816651), the Cure Alzheimer’s Fund, The Owens Family Foundation, and a Wagner Scholarship

About this immune system and neurodegeneration research news

Author: Kristine Zengeler
Source: The Conversation
Contact: Kristine Zengeler – The Conversation
Image: The image is in the public domain

Read original article here

HIV vaccine candidate induces immune response in early clinical trial



CNN
 — 

An experimental HIV vaccine has been found to induce broadly neutralizing antibodies among a small group of volunteers in a Phase 1 study. The findings suggest that a two-dose regimen of the vaccine, given eight weeks apart, can elicit immune responses against the human immunodeficiency virus.

The clinical trial results, published Thursday on World AIDS Day in the journal Science, establish “clinical proof of concept” in support of developing boosting regimens to induce immune responses against HIV infection, for which there is no cure and which can cause acquired immunodeficiency syndrome, known as AIDS.

The vaccine, called eOD-GT8 60mer, had a “favorable safety profile” and induced broadly neutralizing antibodies in 97%, or all but one, of the 36 recipients, according to the researchers from Scripps Research, the Fred Hutchinson Cancer Center, the National Institutes of Health and other institutions in the United States and Sweden.

Antibodies are proteins made by the immune system to help fight infections, and broadly neutralizing antibodies are known to neutralize many genetic variants of HIV, but they have been difficult to elicit by vaccination.

“Learning how to induce broadly neutralizing antibodies against pathogens with high antigenic diversity, such as HIV, influenza, hepatitis C virus, or the family of betacoronaviruses, represents a grand challenge for rational vaccine design,” the researchers wrote. “Germline-targeting vaccine design offers one potential strategy to meet this challenge.”

The eOD-GT8 60mer vaccine candidate is germline-targeting, meaning it was designed to induce the production of broadly neutralizing antibodies by targeting and stimulating the right antibody-producing cells.

The International AIDS Vaccine Initiative announced the start of this Phase 1 clinical trial in 2018, to evaluate the safety of eOD-GT8 60mer and the immune responses it is able to induce.

The trial included a total of 48 healthy adults, ages 18 to 50, who were enrolled at two sites: George Washington University in Washington and Fred Hutchinson Cancer Center in Seattle.

Among the participants, 18 received a 20-microgram dose of the vaccine and, eight weeks later, a same-size dose of the vaccine with an adjuvant; 18 received a 100-microgram dose of the vaccine and, eight weeks later, a same-size dose of the vaccine with an adjuvant; and 12 received two doses of a saline placebo, eight weeks apart. The adjuvant is called AS01B, developed by the pharmaceutical company GSK. The vaccines and placebo were given into the arm muscle.

The researchers collected and analyzed immune cells from the blood and lymph nodes of participants during the study. They specifically examined how B cells, a type of white blood cell that makes antibodies in the immune system, responded to the vaccine.

The researchers found no serious adverse events reported among the study participants, and no participants acquired HIV infection during the study. About 97% – or all but one – of the 48 study participants reported local or systemic adverse events that were generally mild or moderate, such as pain at the injection site, malaise and headache. In most cases, these events were resolved within a day or two.

After the first immunization, all vaccine recipients but no placebo recipients were found to produce antibodies elicited by the eOD-GT8 60mer vaccine. Those vaccine-induced responses increased after the second vaccination, the researchers wrote.

Another Phase 1 study on this vaccine candidate is underway, said Dr. Julie McElrath, senior vice president and director of the vaccine and infectious disease division at Fred Hutchinson Cancer Center, who was an author of the study.

What is unique about this HIV vaccine candidate is that it was engineered to directly target the production of broadly neutralizing antibodies, said Dr. Timothy Schacker, vice dean for research and program director in HIV medicine at the University of Minnesota Medical School, who was not involved in the research.

“In HIV, when we’ve designed and tested vaccines in the past, they didn’t for whatever reason induce these broadly neutralizing antibodies,” he said. “Call them super antibodies, if you want. The broadly neutralizing antibodies work more efficiently. They’re better at controlling things.”

By showing that broadly neutralizing antibodies can be induced by a vaccine, this new study could help inform the development of other types of immunizations, not just HIV vaccines, Schacker said.

“The hope is that if you can induce this kind of immunity in people, you can protect them from some of these viruses that we’ve had a very hard time designing vaccines for that are effective,” he said. “So this is an important step forward.”

Although this is “exciting science,” much more work needs to be done before this vaccine may be considered for use in the public, said Dr. Carlos del Rio, co-director of the Center for AIDS Research at Emory University and executive associate dean for Emory School of Medicine at Grady Health System, who was not involved in the new study.

“We know that broadly neutralizing antibodies are a potentially effective strategy to prevent HIV,” del Rio said. “We’re far from using this as a vaccine, but this is very exciting science. … Investing in this kind of research is critically important in not only developing a vaccine for HIV, but if this strategy works, it can be used for other vaccines.”

An HIV vaccine will probably need to elicit these broadly neutralizing antibodies, or bnAbs, “which are able to recognize globally diverse HIV strains and can prevent HIV infection. However, triggering bnAbs by vaccination has proven impossible so far. A key challenge is that bnAbs rarely develop, even during infection,” Penny Moore, of the University of the Witwatersrand and the National Institute for Communicable Diseases in South Africa, wrote in an editorial published alongside the new study.

A “key question” that still needs to be answered is how long the elicited antibodies from the first immunization can last.

Also, if the booster shot is too different from the previous vaccine, “antibodies that have been triggered by the first vaccination may not recognize the booster and will not mature further,” Moore wrote. “However, the incorporation of many different shots into an HIV vaccine regimen is unappealing. Getting the balance right between the need for antibody maturation toward bnAbs and feasibility in the real world will be essential.”

Last year, more than 38 million people were living with HIV or AIDS around the globe. More than 20 HIV vaccine clinical trials are ongoing around the world, according to the International AIDS Vaccine Initiative.

Many people in the United States have turned to daily HIV-prevention pills or frequent injections, known as PrEP, to reduce their risk of infection.

“It’s a daily pill or it’s a painful shot. It’s a shot that is uncomfortable at best that you have to get several times a year,” Schacker said of PrEP.

But having an HIV vaccine available would make protection against the virus more accessible, he said. “If you can give a vaccine, you’re going to reach more people and provide, if you have an effective vaccine, more and better coverage to reduce the probability of transmission if you’re exposed.”

Read original article here