Tag Archives: Eurasian

‘Only US Engineers Can Modify’: Russian MoD Blames US Defense Firm Raytheon For Upgrading Ukraine’s Tu-141 Drones – EurAsian Times

  1. ‘Only US Engineers Can Modify’: Russian MoD Blames US Defense Firm Raytheon For Upgrading Ukraine’s Tu-141 Drones EurAsian Times
  2. As Bryansk authorities report another downed drone, popular Telegram channel claims Ukraine is targeting region’s airport Meduza
  3. As Ukraine braces for a major Russian offensive, its ‘drone hunters’ fight to defend its cities CBC News
  4. The Somme in the Sky: Lessons from the Russo-Ukrainian Air War War On The Rocks
  5. Ukrainian forces use drones in front line operations in Donetsk Anadolu Agency | English
  6. View Full Coverage on Google News

Read original article here

Iron Dome For Ukraine? Israeli PM Netanyahu Considers Arming Kyiv With One Of World’s Best Defense Systems – EurAsian Times

  1. Iron Dome For Ukraine? Israeli PM Netanyahu Considers Arming Kyiv With One Of World’s Best Defense Systems EurAsian Times
  2. Israel to ditch Putin amid Ukraine war? Netanyahu initiates major policy review I Details Hindustan Times
  3. Israel Under Pressure to Send Military Aid to Ukraine Voice of America – VOA News
  4. Israel is considering sending its Iron Dome air defense system to Ukraine, Netanyahu says Yahoo News
  5. Russia warns Israel against aiding Ukraine; Netanyahu to ‘look into’ supplying Iron Dome to Kyiv Hindustan Times
  6. View Full Coverage on Google News

Read original article here

Hosting Largest Military Base Outside USA At One Point, China Frowns As US Boosting Presence In The Philippines – EurAsian Times

  1. Hosting Largest Military Base Outside USA At One Point, China Frowns As US Boosting Presence In The Philippines EurAsian Times
  2. The US and the Philippines’ military agreement sends a warning to China – 5 key things to know The Conversation
  3. US-Philippines bases deal seen as reaction to China’s actions in South China Sea South China Morning Post
  4. Reviving America’s Pacific Deterrent – WSJ The Wall Street Journal
  5. US Gets Access To 9 Military Bases In The Philippines; China Warns Manila Of Being ‘Dragged Into Troubled Waters’ EurAsian Times
  6. View Full Coverage on Google News

Read original article here

Merging morphological and genetic evidence to assess hybridization in Western Eurasian late Pleistocene hominins

  • Ackermann, R. et al. Hybridization in human evolution: insights from other organisms. Evol. Anthropol. 28, 189–209 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Taylor, S. A. & Larson, E. L. Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nat. Ecol. Evol. 3, 170–177 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Fu, Q. et al. Genome sequence of a 45,000-year-old modern human from western Siberia. Nature 514, 445–449 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Fu, Q. et al. The genetic history of Ice Age Europe. Nature 534, 200–205 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Green, R. E. et al. A draft sequence of the Neandertal genome. Science 328, 710–722 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hajdinjak, M. et al. Initial Upper Palaeolithic humans in Europe had recent Neanderthal ancestry. Nature 592, 253–257 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Prüfer, K. et al. A genome sequence from a modern human skull over 45,000 years old from Zlatý kůň in Czechia. Nat. Ecol. Evol. 5, 820–825 (2021).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Villanea, F. A. & Schraiber, J. G. Multiple episodes of interbreeding between Neanderthal and modern humans. Nat. Ecol. Evol. 3, 39–44 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Chen, L., Wolf, A. B., Fu, W., Li, L. & Akey, J. M. Identifying and interpreting apparent Neanderthal ancestry in African individuals. Cell 180, 677–687.e16 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Posth, C. et al. Deeply divergent archaic mitochondrial genome provides lower time boundary for African gene flow into Neanderthals. Nat. Commun. 8, 16046 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Meyer, M. et al. A high-coverage genome sequence from an archaic Denisovan individual. Science 338, 222–226 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Reich, D. et al. Genetic history of an archaic hominin group from Denisova Cave in Siberia. Nature 468, 1053–1060 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Prufer, K. et al. The complete genome sequence of a Neanderthal from the Altai Mountains. Nature 505, 43–49 (2014).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Slon, V. et al. Neandertal and Denisovan DNA from Pleistocene sediments. Science https://doi.org/10.1126/science.aam9695 (2017).

  • Slon, V. et al. The genome of the offspring of a Neanderthal mother and a Denisovan father. Nature 561, 113–116 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Durvasula, A. & Sankararaman, S. Recovering signals of ghost archaic introgression in African populations. Sci. Adv. 6, eaax5097 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hammer, M. F., Woerner, A. E., Mendez, F. L., Watkins, J. C. & Wall, J. D. Genetic evidence for archaic admixture in Africa. Proc. Natl Acad. Sci. USA 108, 15123–15128 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Harvati, K. et al. The later stone age Calvaria from Iwo Eleru, Nigeria: morphology and chronology. PLoS ONE 6, e24024 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lachance, J. et al. Evolutionary history and adaptation from high-coverage whole-genome sequences of diverse African hunter-gatherers. Cell 150, 457–469 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lipson, M. et al. Ancient West African foragers in the context of African population history. Nature 577, 665–670 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wang, K., Mathieson, I., O’Connell, J. & Schiffels, S. Tracking human population structure through time from whole genome sequences. PLoS Genet. 16, e1008552 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Smith, F. H., Ahern, J. C. M., Janković, I. & Karavanić, I. The Assimilation Model of modern human origins in light of current genetic and genomic knowledge. Quat. Int. 450, 126–136 (2017).

    Article 

    Google Scholar 

  • Dannemann, M., Andrés, A. M. & Kelso, J. Introgression of Neandertal- and Denisovan-like haplotypes contributes to adaptive variation in human toll-like receptors. Am. J. Hum. Genet. 98, 22–33 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Hu, Y., Ding, Q., He, Y., Xu, S. & Jin, L. Reintroduction of a homocysteine level-associated allele into East asians by Neanderthal introgression. Mol. Biol. Evol. 32, 3108–3113 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Huerta-Sánchez, E. et al. Altitude adaptation in Tibetans caused by introgression of Denisovan-like DNA. Nature 512, 194–197 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Lin, Y. L., Pavlidis, P., Karakoc, E., Ajay, J. & Gokcumen, O. The evolution and functional impact of human deletion variants shared with archaic hominin genomes. Mol. Biol. Evol. 32, 1008–1019 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sankararaman, S. et al. The genomic landscape of Neanderthal ancestry in present-day humans. Nature 507, 354–357 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Schlebusch, C. M. et al. Genomic variation in seven Khoe-San groups reveals adaptation and complex African history. Science 338, 374–379 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Simonti, C. N. et al. The phenotypic legacy of admixture between modern humans and Neandertals. Science 351, 737–741 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sudmant, P. H. et al. Global diversity, population stratification, and selection of human copy-number variation. Science 349, aab3761 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Vernot, B. & Akey, J. M. Resurrecting surviving Neandertal lineages from modern human genomes. Science 343, 1017–1021 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Skov, L. et al. The nature of Neanderthal introgression revealed by 27,566 Icelandic genomes. Nature https://doi.org/10.1038/s41586-020-2225-9 (2020).

  • Mozzi, A. et al. Distinct selective forces and Neanderthal introgression shaped genetic diversity at genes involved in neurodevelopmental disorders. Sci. Rep. 7, 6116 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Gregory, M. D. et al. Neanderthal-derived genetic variation shapes modern human cranium and brain. Sci. Rep. 7, 6308 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Gunz, P. et al. Neandertal introgression sheds light on modern human endocranial globularity. Curr. Biol. 29, 120–127.e5 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zeberg, H. & Pääbo, S. The major genetic risk factor for severe COVID-19 is inherited from Neanderthals. Nature 587, 610–612 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zeberg, H. & Pääbo, S. A genomic region associated with protection against severe COVID-19 is inherited from Neandertals. Proc. Natl Acad. Sci. USA 118, e2026309118 (2021).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gokcumen, O. Archaic hominin introgression into modern human genomes. Am. J. Phys. Anthropol. https://doi.org/10.1002/ajpa.23951 (2019).

  • Arnold, M. L. Evolution Through Genetic Exchange (Oxford Univ. Press, 2006).

  • Jolly, C. J. A proper study for mankind: analogies from the Papionin monkeys and their implications for human evolution. Am. J. Phys. Anthropol. 116, 177–204 (2001).

    Article 

    Google Scholar 

  • Mallet, J. Hybridization as an invasion of the genome. Trends Ecol. Evol. 20, 229–237 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Stelkens, R. & Seehausen, O. Genetic distance between species predicts novel trait expression in their hybrids. Evolution 63, 884–897 (2009).

    PubMed 
    Article 

    Google Scholar 

  • Ackermann, R., Brink, J., Vrahimis, S. & de Klerk, B. Hybrid wildebeest (Artiodactyla: Bovidae) provide further evidence for shared signatures of admixture in mammalian crania. S. Afr. J. Sci. 106, 1–4 (2010).

    Article 

    Google Scholar 

  • Baranov, A. S. & Zakharov, V. M. Developmental stability in hybrids of European bison, Bison bonasus, and domestic cattle. Acta Theriol. 42, 87–90 (1997).

    Article 

    Google Scholar 

  • Brink, J. S. The Evolution of the Black Wildebeest, Connochaetes Gnou, and Modern Large Mammal Faunas in Central Southern Africa. PhD thesis, Univ. Stellenbosch (2005).

  • Cahill, J. A. et al. Genomic evidence of geographically widespread effect of gene flow from polar bears into brown bears. Mol. Ecol. 24, 1205–1217 (2015).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kumar, V. et al. The evolutionary history of bears is characterized by gene flow across species. Sci. Rep. 7, 46487 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Figueiró, H. V. et al. Genome-wide signatures of complex introgression and adaptive evolution in the big cats. Sci. Adv. https://doi.org/10.1126/sciadv.1700299 (2017).

  • Li, G., Davis, B. W., Eizirik, E. & Murphy, W. J. Phylogenomic evidence for ancient hybridization in the genomes of living cats (Felidae). Genome Res. 26, 1–11 (2016).

  • Benson, J. F., Patterson, B. R. & Wheeldon, T. J. Spatial genetic and morphologic structure of wolves and coyotes in relation to environmental heterogeneity in a Canis hybrid zone. Mol. Ecol. 21, 5934–5954 (2012).

    PubMed 
    Article 

    Google Scholar 

  • Khosravi, R., Rezaei, H. R. & Kaboli, M. Detecting hybridization between Iranian wild wolf (Canis lupus pallipes) and free-ranging domestic dog (Canis familiaris) by analysis of microsatellite markers. Zool. Sci. 30, 27–34 (2013).

    Article 

    Google Scholar 

  • Mahan, B. R., Gipson, P. S. & Case, R. M. Characteristics and distribution of coyote X dog hybrids collected in Nebraska. Am. Midl. Nat. 100, 408–415 (1978).

    Article 

    Google Scholar 

  • Monzon, J., Kays, R. & Dykhuizen, D. E. Assessment of coyote-wolf-dog admixture using ancestry-informative diagnostic SNPs. Mol. Ecol. 23, 182–197 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Vila, C. et al. Combined use of maternal, paternal and bi-parental genetic markers for the identification of wolf-dog hybrids. Heredity 90, 17–24 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pastorini, J., Zaramody, A., Curtis, D. J., Nievergelt, C. M. & Mundy, N. I. Genetic analysis of hybridization and introgression between wild mongoose and brown lemurs. BMC Evol. Biol. 9, 32 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Wyner, Y. M., Johnson, S. E., Stumpf, R. M. & Desalle, R. Genetic assessment of a white-collared×red-fronted lemur hybrid zone at Andringitra, Madagascar. Am. J. Primatol. 57, 51–66 (2002).

    PubMed 
    Article 

    Google Scholar 

  • Aguiar, L. M. et al. Sympatry between Alouatta caraya and Alouatta clamitans and the rediscovery of free-ranging potential hybrids in Southern Brazil. Primates 48, 245–248 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Cortés-Ortiz, L., Agostini, I., Aguiar, L. M., Kelaita, M., Silva, F. E., & Bicca-Marques, J. C. (2015). Hybridization in howler monkeys: current understanding and future directions. In Howler Monkeys: Behaviour, Ecology and Conservation (eds Kowalewski, M. M. et al.) 107–131 (Springer-Verlag, New York, 2015).

  • Malukiewicz, J. et al. Hybridization effects and genetic diversity of the common and black-tufted marmoset (Callithrix jacchus and Callithrix penicillata) mitochondrial control region. Am. J. Phys. Anthropol. 155, 522–536 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Peres, C. A., Patton, J. L., Nazareth, F. & da Silva, M. Riverine barriers and gene flow in Amazonian saddle-back tamarins. Folia Primatol. 67, 113–124 (1996).

    CAS 
    Article 

    Google Scholar 

  • Rossan, R. N. & Baerg, D. C. Laboratory and feral hybridization of Ateles geoffroyi panamensis Kellogg and Goldman 1944 and A. fusciceps robustus Allen 1914 in Panama. Primates 18, 235–237 (1977).

    Article 

    Google Scholar 

  • Detwiler, K. M., Burrell, A. S. & Jolly, C. J. Conservation implications of hybridization in African cercopithecine monkeys. Int. J. Primatol. 26, 661–684 (2005).

    Article 

    Google Scholar 

  • Fooden, J. Rhesus and crab-eating macaques: intergradation in Thailand. Science 143, 363–364 (1964).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schillaci, M. A., Froehlich, J. W., Supriatna, J. & Jones-Engel, L. The effects of hybridization on growth allometry and craniofacial form in Sulawesi macaques. J. Human Evol. 49, 335–369 (2005).

    Article 

    Google Scholar 

  • Wildman, D. E. et al. Mitochondrial evidence for the origin of hamadryas baboons. Mol. Phylogenet. Evol. 32, 287–296 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zinner, D., Groeneveld, L. F., Keller, C. & Roos, C. Mitochondrial phylogeography of baboons (Papio spp.): indication for introgressive hybridization? BMC Evol. Biol. 9, 83 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Harvati, K., Frost, S. R. & McNulty, K. P. Neanderthal taxonomy reconsidered: implications of 3D primate models of intra- and interspecific differences. Proc. Natl Acad. Sci. USA 101, 1147–1152 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jolly, C. J. in Species, Species Concepts and Primate Evolution (eds Kimbel, W. H. & Martin, L. B.) 67–107 (Springer, 1993).

  • Brockelman, W. Y. & Srikosamatara, S. Maintenance and evolution of social structure in gibbons. In The Lesser Apes: Evolutionary and Behavioural Biology (eds Preuschoft, H. et al.) 298–323 (Edinburgh University Press, Edinburgh, 1984).

  • Marshall, J. & Sugardjito, J. in Comparative Primate Biology, 1. Systematics, Evolution and Anatomy (eds Swindler, D. R. & Erwin, J.) 137–185 (Liss, 1986).

  • Prado-Martinez, J. et al. Great ape genetic diversity and population history. Nature https://doi.org/10.1038/nature12228 (2013).

  • de Manuel, M. et al. Chimpanzee genomic diversity reveals ancient admixture with bonobos. Science 354, 477–481 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Arnold, M. L. & Kunte, K. Adaptive genetic exchange: a tangled history of admixture and evolutionary innovation. Trends Ecol. Evol. 32, 601–611 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Nye, J. et al. Selection in the introgressed regions of the chimpanzee genome. Genome Biol. Evol. 10, 1132–1138 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Sankararaman, S., Mallick, S., Patterson, N. & Reich, D. The combined landscape of Denisovan and Neanderthal ancestry in present-day humans. Curr. Biol. 26, 1241–1247 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vernot, B. et al. Excavating Neandertal and Denisovan DNA from the genomes of Melanesian individuals. Science 352, 235–239 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Kuhlwilm, M. The evolution of FOXP2 in the light of admixture. Curr. Opin. Behav. Sci. 21, 120–126 (2018).

    Article 

    Google Scholar 

  • Kuhlwilm, M., Han, S., Sousa, V. C., Excoffier, L. & Marques-Bonet, T. Ancient admixture from an extinct ape lineage into bonobos. Nat. Ecol. Evol. 3, 957–965 (2019).

    PubMed 
    Article 

    Google Scholar 

  • Duarte, C. et al. The early Upper Paleolithic human skeleton from the Abrigo do Lagar Velho (Portugal) and modern human emergence in Iberia. Proc. Nat Acad. Sci. USA 96, 7604–7609 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Wolpoff, M., Hawks, J., Frayer, D. & Hunley, K. Modern human ancestry at the peripheries: a test of the replacement theory. Science 291, 293–297 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Soficaru, A., Petrea, C., Dobos, A. & Trinkaus, E. Early modern humans from the Pestera Muierii, Baia de Fier, Romania. Proc. Natl Acad. Sci. USA 103, 17196–17201 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Rougier, H. et al. Peştera cu Oase 2 and the cranial morphology of early modern Europeans. Proc. Natl Acad. Sci. USA 104, 1165–1170 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Trinkaus, E., Constantin, S. & Zilhão, J. Life and Death at the Pestera cu Oase. A Setting for Modern Human Emergence in Europe (Oxford Univ. Press, 2013).

  • Ackermann, R. R. Phenotypic traits of primate hybrids: recognizing admixture in the fossil record. Evol. Anthropol. 19, 258–270 (2010).

    Article 

    Google Scholar 

  • Smith, F., Lacy, K. & Caldwell, S. Morphological evidence for modern human influences in late central European Neandertals. Anthropologie 53, 61–76 (2015).

    Google Scholar 

  • Smith, F. H., Hutchinson, V. T. & Janković, I. in African Genesis: Perspectives on Hominin Evolution (eds Reynolds, S. C. & Gallagher, A.) 365–-393 (Cambridge Univ. Press, 2012).

  • Smith, F. H., Falsetti, A. B., & Simmons, T. in Man and Environment in the Paleolithic (ed. Ullrich, H.) 167–179 (ERAUL, 1995).

  • Ahern, J. C., Janković, I., Voisin, J. & Smith, F. H. in Origins of Modern Humans: Biology Reconsidered (eds Smith, F. H. & Ahern, J. C.) 151–222 (Wiley-Blackwell, 2013).

  • Cartmill, M. & Smith, F. H. The Human Lineage (John Wiley & Sons, 2009).

  • Condemi, S. et al. Possible interbreeding in late Italian Neanderthals? New data from the Mezzena Jaw (Monti Lessini, Verona, Italy). PLoS ONE 8, e59781 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Harvati, K., Gunz, P. & Grigorescu, D. Cioclovina (Romania): affinities of an early modern European. J. Hum. Evol. 53, 732–746 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Stringer, C. What makes a modern human. Nature 485, 33–35 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tattersall, I. & Schwartz, J. H. Hominids and hybrids: the place of Neanderthals in human evolution. Proc. Natl Acad. Sci. USA 96, 7117–7119 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Klein, R. The Human Career 3rd edn (Univ. Chicago Press, 2009).

  • Klein, R. G. Paleoanthropology. Whither the Neanderthals? Science 299, 1525–1527 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ackermann, R. R., Rogers, J. & Cheverud, J. Identifying the morphological signatures of hybridization in primate and human evolution. J. Hum. Evol. 51, 632–645 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Ackermann, R. R., Schroeder, L., Rogers, J. & Cheverud, J. Further evidence for phenotypic signatures of hybridization in descendant baboon populations. J. Hum. Evol. 76, 54–62 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Warren, K. A. et al. Craniomandibular form and body size variation of first generation mouse hybrids: a model for hominin hybridization. J. Hum. Evol. 116, 57–74 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Harvati, K. & Roksandic, M. in Paleoanthropology of the Balkans and Anatolia: Human Evolution and its Context (eds Harvati, K. & Roksandic, M.) 51–68 (Springer, 2016).

  • Ackermann, R. R. in Tinkering: the Microevolution of Development Symposium 284 (ed. Novartis Foundation) 262–279 (Wiley, 2007).

  • Goodwin, T. Supernumerary teeth in Pleistocene, recent, and hybrid individuals of the Spermophilus richardsonii Complex (Sciuridae). J. Mammal. 79, 1161–1169 (1998).

    Article 

    Google Scholar 

  • Zdjelar, N., Nagendran, L., Kendall, C., Ackermann, R. R. & Schroeder, L. The hybrid skull of the eastern coyote (Canis latrans var.): nonmetric traits and craniomandibular shape. J. Morphol. 282, 1745–1764 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Eichel, K. & Ackermann, R. R. Variation in the nasal cavity of baboon hybrids with implications for late Pleistocene hominins. J. Hum. Evol. 94, 134–145 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Rieseberg, L., Archer, M. & Wayne, R. Transgressive segregation, adaptation and speciation. Heredity 83, 363–372 (1999).

    PubMed 
    Article 

    Google Scholar 

  • Leamy, L. Morphometric studies in inbred and hybrid house mice. I. Patterns in the mean values. J. Hered. 73, 171–176 (1982).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Leamy, L. Morphometric studies in inbred and hybrid mouse. VII. heterosis in fluctuating asymmetry at different ages. Acta Zoologica Fennica 191, 111–120 (1992).

    Google Scholar 

  • Leamy, L. & Thorpe, R. Morphometric studies in inbred and hybrid house mice. Heterosis, homeostasis and heritability of size and shape. Bio. J. Linn. Soc. Lond. 22, 233–241 (1984).

    Article 

    Google Scholar 

  • Percival, C. J. et al. Genetics of murine craniofacial morphology: diallel analysis of the eight founders of the Collaborative Cross. J. Anat. 228, 96–112 (2016).

    PubMed 
    Article 

    Google Scholar 

  • Thorpe, R. & Leamy, L. Morphometric studies in inbred and hybrid house mice (Mus sp.): multivariate analysis of size and shape. J. Zool. 199, 421–432 (1983).

    Article 

    Google Scholar 

  • Warren, K. A. Using the Craniomandibular Morphology of Hybrid Mice to Better Understand Hybrid Morphologies in the Hominin Fossil Record. PhD thesis, Univ. Cape Town (2017).

  • Cheverud, J. M., Jacobs, S. C. & Moore, A. J. Genetic differences among subspecies of the saddle-back tamarin (Saguinus fuscicollis):evidence from hybrids. A. J. Primatol. 31, 23–39 (1993).

    Article 

    Google Scholar 

  • Carmon, J. L. Heterosis, combining ability, and maternal effects in mice. J. Genet. 58, 225–231 (1963).

    Article 

    Google Scholar 

  • Kohn, L. A. P., Langton, L. B. & Cheverud, J. M. Subspecific genetic differences in the saddle-back tamarin (Saguinus fuscicollis) postcranial skeleton. Am. J. Primatol. 54, 41–56 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kurnianto, E., Shinjo, A., Suga, D. & Uema, N. Diallel cross analysis of body weight in subspecies of mice. Exp. Anim. 48, 277–283 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Buck, L. T. et al. Effects of admixture on pelvic morphology: a macaque model. J. Hum. Evol. 159, 1030–1049 (2021).

    Article 

    Google Scholar 

  • Bergström, A., Stringer, C., Hajdinjak, M., Scerri, E. M. L. & Skoglund, P. Origins of modern human ancestry. Nature 590, 229–237 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Harvati, K. et al. Apidima Cave fossils provide earliest evidence of Homo sapiens in Eurasia. Nature 571, 500–504 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Tryon, C. A. et al. Late Pleistocene age and archaeological context for the hominin calvaria from GvJm-22 (Lukenya Hill, Kenya. Proc. Natl Acad. Sci. USA 112, 2682–2687 (2015).

  • Nicholson, E. & Harvati, K. Quantitative analysis of human mandibular shape using three-dimensional geometric morphometrics. Am. J. Phys. Anthropol. 131, 368–383 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Gunz, P. & Harvati, K. The Neanderthal “chignon”: variation, integration, and homology. J. Hum. Evol. 52, 262–274 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Harvati, K., Hublin, J.-J. & Gunz, P. Evolution of middle-late Pleistocene human cranio-facial form: a 3-D approach. J. Hum. Evol. 59, 445–464 (2010).

    PubMed 
    Article 

    Google Scholar 

  • Fu, Q. et al. An early modern human from Romania with a recent Neanderthal ancestor. Nature 524, 216–219 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Trinkaus, E. An abundance of developmental anomalies and abnormalities in Pleistocene people. Proc. Natl Acad. Sci. USA 115, 11941–11946 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gunz, P. et al. Early modern human diversity suggests subdivided population structure and a complex out-of-Africa scenario. Proc. Natl Acad. Sci. USA 106, 6094–6098 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Scerri, E. M. L. et al. Did our species evolve in subdivided populations across Africa, and why does it matter? Trends Ecol. Evol. 33, 582–594 (2018).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Siska, V. Human Population History and its Interplay with Natural Selection. PhD thesis, Univ. Cambridge (2018).

  • Harvati, K. & Weaver, T. D. Human cranial anatomy and the differential preservation of population history and climate signatures. Anat. Rec. A 288, 1225–1233 (2006).

    Article 

    Google Scholar 

  • Hubbe, M., Hanihara, T. & Harvati, K. Climate signatures in the morphological differentiation of worldwide modern human populations. Anat. Rec. 292, 1720–1733 (2009).

    Article 

    Google Scholar 

  • Noback, M. L. & Harvati, K. The contribution of subsistence to global human cranial variation. J. Hum. Evol. 80, 34–50 (2015).

    PubMed 
    Article 

    Google Scholar 

  • Schmidt, K. L. & Cohn, J. F. Human facial expressions as adaptations: evolutionary questions in facial expression research. Am. J. Phys. Anthropol. 116, 3–24 (2001).

    Article 

    Google Scholar 

  • Mellars, P. & French, J. C. Tenfold population increase in Western Europe at the Neandertal-to-modern human transition. Science 333, 623–627 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Franciscus, R. & Vlček, E. in Early Modern Human Evolution in Central Europe: the People of Dolní Vĕstonice and Pavlov (eds Trinkaus, E. & Svoboda, J. A.) 63–152 (Oxford Univ. Press, 2006).

  • Galway-Witham, J. & Stringer, C. How did Homo sapiens evolve? Science 360, 1296–1298 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ríos, L. et al. Skeletal anomalies in the Neandertal family of El Sidrón (Spain) support a role of inbreeding in Neandertal extinction. Sci. Rep. 9, 1697 (2019).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Dennell, R. W., Martinón-Torres, M. & Bermúdez de Castro, J. M. Hominin variability, climatic instability and population demography in Middle Pleistocene Europe. Quat. Sci. Rev. 30, 1511–1524 (2011).

    Article 

    Google Scholar 

  • Charpentier, M. J. E., Widdig, A. & Alberts, S. C. Inbreeding depression in non-human primates: a historical review of methods used and empirical data. Am. J. Primatol. 69, 1370–1386 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • G. Rawlins, R. & J. Kessler, M. Congenital and hereditary anomalies in the rhesus monkeys (Macaca mulatta) of Cayo Santiago. Teratology 28, 169–174 (1983).

  • Nakamichi, M., Nobuhara, H., Nobuhara, T., Nakahashi, M. & Nigi, H. Birth rate and mortality rate of infants with congenital malformations of the limbs in the Awajishima free-ranging group of Japanese monkeys (Macaca fuscata). Am. J. Primatol. 42, 225–234 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chalifoux, L. V. & Elliott, M. W. Congenital anomalies in two neonatal tamarins (Saguinus oedipus and Saguinus fuscicollis). J. Med. Primatol. 15, 29–337 (1986).

    Google Scholar 

  • van der Valk, T., Díez-del-Molino, D., Marques-Bonet, T., Guschanski, K. & Dalén, L. Historical genomes reveal the genomic consequences of recent population decline in eastern Gorillas. Curr. Biol. 29, 165–170.e6 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Hublin, J. J. The origin of Neandertals. Proc. Natl Acad. Sci. USA 106, 16022–16027 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Currat, M. & Excoffier, L. Strong reproductive isolation between humans and Neanderthals inferred from observed patterns of introgression. Proc. Natl Acad. Sci. USA 108, 15129–15134 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Juric, I., Aeschbacher, S. & Coop, G. The strength of selection against Neanderthal introgression. PLoS Genet. 12, e1006340 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • McCoy, R. C., Wakefield, J. & Akey, J. M. Impacts of Neanderthal-introgressed sequences on the landscape of human gene expression. Cell 168, 916–927.e2 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Valladas, H. et al. TL dates for the Neanderthal site of the Amud Cave, Israel. J. Archaeol. Sci. 26, 259–268 (1999).

    Article 

    Google Scholar 

  • Bahain, J. J., Sarcia, M. N., Falguères, C. & Yokoyama, Y. Attempt at ESR dating of tooth enamel of French middle Pleistocene sites. Appl. Radiat. Isot. 44, 267–272 (1993).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Grün, R. & Stringer, C. B. ESR dating and the evolution of modern humans. Archaeometry 33, 53–199 (1991).

    Article 

    Google Scholar 

  • Schmitz, R. W. et al. The Neandertal type site revisited: interdisciplinary investigations of skeletal remains from the Neander Valley, Germany. Proc. Natl Acad. Sci. USA 99, 13342–13347 (2002).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Guérin, G. et al. A multi-method luminescence dating of the palaeolithic sequence of La Ferrassie based on new excavations adjacent to the La Ferrassie 1 and 2 skeletons. J. Archaeol. Sci. 58, 47–166 (2015).

    Article 

    Google Scholar 

  • Oakley, K., Campbell, B. & Molleson, T. Catalogue of Fossil Hominids Part II: Europe (British Museum (Natural History), London, 1971).

  • Grün, R. & Stringer, C. B. Electron spin resonance dating and the evolution of modern humans. Archaeometry 33, 153–199 (1991).

    Article 

    Google Scholar 

  • Schwarcz, H. P. et al. On the reexamination of Grotta Guattari: uranium-series and electron-spin-resonance dates. Curr. Anthropol. 32, 313–316 (1991).

    Article 

    Google Scholar 

  • Rink, W. J., Schwarcz, H. P., Smith, F. H. & Radovĉić, J. ESR ages for Krapina hominids. Nature 378, 24 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Debénath, A. & Jelinek, A. J. Nouvelles fouilles à La Quina (Charente). Résultats préliminaires. 40, (1998).

  • Vandermeersch, B. & Trinkaus, E. The postcranial remains of the Régourdou 1 Neandertal: the shoulder and arm remains. J. Hum. Evol. 28, 439–476 (1995).

    Article 

    Google Scholar 

  • Marra, F. et al. The aggradational successions of the Aniene River Valley in Rome: age constraints to early Neanderthal presence in Europe. PLoS ONE 12, e0170434 (2017).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Solecki, R. S. Shanidar, the First Flower People (Knopf, 1971).

  • Devièse, T. et al. Reevaluating the timing of Neanderthal disappearance in Northwest Europe. Proc. Natl Acad. Sci. USA 118, e2022466118 (2021).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Grün, R. & Stringer, C. Tabun revisited: revised ESR chronology and new ESR and U-series analyses of dental material from Tabun C1. J. Hum. Evol. 39, 601–612 (2000).

    PubMed 
    Article 

    Google Scholar 

  • Grün, R. et al. U-series and ESR analyses of bones and teeth relating to the human burials from Skhul. J. Hum. Evol. 49, 316–334 (2005).

    PubMed 
    Article 

    Google Scholar 

  • Michel, V., Delanghe-Sabatier, D., Bard, E. & Barroso Ruiz, C. U-series, ESR and 14C studies of the fossil remains from the Mousterian levels of Zafarraya Cave (Spain): a revised chronology of Neandertal presence. Quat. Geochronol. 15, 20–33 (2013).

    Article 

    Google Scholar 

  • Wood, R. E. et al. Radiocarbon dating casts doubt on the late chronology of the Middle to Upper Palaeolithic transition in southern Iberia. Proc. Natl Acad. Sci. USA 110, 2781–2786 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Haile-Selassie, Y., Asfaw, B. & White, T. D. Hominid cranial remains from upper Pleistocene deposits at Aduma, Middle Awash, Ethiopia. Am. J. Phys. Anthropol. 123, 1–10 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Grine, F. et al. Late Pleistocene human skull from Hofmeyr. Science 315, 226–229 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schwartz, J. H. & Tattersall, I. The Human Fossil Record, Craniodental Morphology of Genus Homo (Africa and Asia) Vol. 2. (Wiley-Liss, 2003).

  • Wood, B. Wiley-Blackwell Encyclopedia of Human Evolution 1st edn (Wiley-Blackwell, 2011).

  • Day, M. H., Leakey, M. D. & Magori, C. A new hominid fossil skull (L.H. 18) from the Ngaloba Beds, Laetoli, northern Tanzania. Nature 284, 55–56 (1980).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Leakey, M. D. & Harris, J. M. (eds) Laetoli: A Pliocene Site in Northern Tanzania (Oxford Univ. Press, 1987).

  • Vidal, C. M. et al. Age of the oldest known Homo sapiens from eastern Africa. Nature 601, 579–583 (2022).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • McDougall, I., Brown, F. H. & Fleagle, J. G. Stratigraphic placement and age of modern humans from Kibish, Ethiopia. Nature 433, 733–736 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Schild, R. & Wendorf, F. Palaeolithic living sites in upper and middle Egypt: a review article. J. Field Archaeol. 29, 447–461 (2002).

    Article 

    Google Scholar 

  • Mellars, P. A., Bricker, H. M., Gowlett, J. A. J. & Hedges, R. E. M. Radiocarbon accelerator dating of French Upper Palaeolithic sites. Curr. Anthropol. 28, 128–133 (1987).

    Article 

    Google Scholar 

  • Holt, B. M. & Formicola, V. Hunters of the Ice Age: the biology of Upper Paleolithic people. Am. J. Phys. Anthropol. 137, 70–99 (2008).

    Article 

    Google Scholar 

  • Barshay-Szmidt, C. et al. New extensive focused AMS 14C dating of the Middle and Upper Magdalenian of the western Aquitaine/Pyrenean region of France (ca. 19–14 ka cal BP): proposing a new model for its chronological phases and for the timing of occupation. Quat. Int. 414, 62–91 (2016).

    Article 

    Google Scholar 

  • Soficaru, A., Petrea, C., Doboş, A. & Trinkaus, E. The human cranium from the Peştera Cioclovina Uscată, Romania: context, age, taphonomy, morphology, and paleopathology. Curr. Anthropol. 48, 611–619 (2007).

    Article 

    Google Scholar 

  • Henry-Gambier, D. Les fossiles de Cro-Magnon (Les Eyzies-de-Tayac, Dordogne): nouvelles données sur leur position chronologique et leur attribution culturelle. Bulletins et mémoires de la Société d’Anthropologie de Paris 14, 1–2 (2002).

    Article 

    Google Scholar 

  • Trinkaus, E. & Svoboda, J. Early Modern Human Evolution in Central Europe: The People of Dolní Věstonice and Pavlov. (Oxford Univ. Press, 2006).

  • Formicola, V., Pettitt, P. B. & Del Lucchese, A. A direct AMS radiocarbon date on the Barma Grande 6 Upper Paleolithic skeleton. Curr. Anthropol. 45, 114–118 (2004).

    Article 

    Google Scholar 

  • Schwartz, J. H. & Tattersall, I. The Human Fossil Record, Terminology and Craniodental Morphology of Genus I Homo/I (Europe) Vol. 1 (Wiley-Liss, 2002).

  • Wild, E. M. et al. Direct dating of Early Upper Palaeolithic human remains from Mladeč. Nature 435, 332–335 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Trinkaus, E. et al. An early modern human from the Peştera cu Oase, Romania. Proc. Natl Acad. Sci. USA 100, 11231–11236 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Street, M., Terberger, T. & Orschiedt, J. A critical review of the German Paleolithic hominin record. J. Hum. Evol. 51, 551–579 (2006).

    PubMed 
    Article 

    Google Scholar 

  • Svoboda, J. A. The Upper Paleolithic burial area at Předmostí: ritual and taphonomy. J. Hum. Evol. 54, 15–33 (2008).

    Article 

    Google Scholar 

  • Read original article here

    South Carolina: Highly pathogenic Eurasian H5 avian influenza confirmed in wild American wigeon

    NewsDesk  @infectiousdiseasenews

    The United States Department of Agriculture’s (USDA) Animal and Plant Health Inspection Service (APHIS) has confirmed highly pathogenic Eurasian H5 avian influenza (HPAI) in a wild American wigeon in Colleton County, South Carolina.

    Image/U.S. Fish and Wildlife Service

    Eurasian H5 HPAI has not been detected in a wild bird in the United States since 2016.

    The Centers for Disease Control and Prevention considers the risk to the general public from HPAI H5 infections to be low. No human infections with Eurasian H5 viruses have occurred in the United States. As a reminder, the proper handling and cooking of poultry and eggs to an internal temperature of 165˚F kills bacteria and viruses, including HPAI.

    Since wild birds can be infected with these viruses without appearing sick, people should minimize direct contact with wild birds by using gloves. If contact occurs, wash your hands with soap and water, and change clothing before having any contact with healthy domestic poultry and birds. Hunters should dress game birds in the field whenever possible and practice good biosecurity to prevent any potential disease spread.

    Subscribe to Outbreak News TV on YouTube

    Avian influenza (AI) is caused by an influenza type A virus which can infect poultry (such as chickens, turkeys, pheasants, quail, domestic ducks, geese, and guinea fowl) and is carried by free flying waterfowl such as ducks, geese and shorebirds. AI viruses are classified by a combination of two groups of proteins: hemagglutinin or “H” proteins, of which there are 16 (H1–H16), and neuraminidase or “N” proteins, of which there are 9 (N1–N9). Many different combinations of “H” and “N” proteins are possible. Each combination is considered a different subtype and can be further broken down into different strains which circulate within flyways/geographic regions. AI viruses are further classified by their pathogenicity (low or high)—the ability of a particular virus strain to produce disease in domestic chickens.

    Germany: Goose dies at Heidelberg Zoo, Infected with H5N1 avian influenza

    Pennsylvania: Canada Lynx tests positive for COVID-19 at Pittsburgh Zoo

    Canine influenza H3N2 outbreak in Los Angeles County update

    Alberta: 1st case of BSE reported in Canada in 6 years

    Read original article here