Tag Archives: enables

Horizon Forbidden West PC Patch 1.0.43.0 Enables DLSS 3 Frame Generation in Cut Scenes, and More – Wccftech

  1. Horizon Forbidden West PC Patch 1.0.43.0 Enables DLSS 3 Frame Generation in Cut Scenes, and More Wccftech
  2. Horizon Forbidden West is a marvel — if your PC can handle the heat Digital Trends
  3. Horizon Forbidden West review: the action adventure sequel has even more robot dinosaurs, of course it’s good Rock Paper Shotgun
  4. My time with NVIDIA at GDC showed me exactly why the massive tech company seems unstoppable right now Windows Central
  5. Horizon Forbidden West on PC is one of the best-looking games ever — but I’m having two major issues with it Tom’s Guide

Read original article here

Delayed engagement of host defenses enables SARS-CoV-2 viremia and productive infection of distal organs in the hamster model of COVID-19 – Science

  1. Delayed engagement of host defenses enables SARS-CoV-2 viremia and productive infection of distal organs in the hamster model of COVID-19 Science
  2. Host nasopharyngeal transcriptome dataset of a SARS-CoV-2 positive Italian cohort | Scientific Data Nature.com
  3. Metformin shows promising antiviral activity against SARS-CoV-2 News-Medical.Net
  4. Designing a SARS-CoV-2 decoy National Institutes of Health (.gov)
  5. Waning cellular immune responses and predictive factors in maintaining cellular immunity against SARS-CoV-2 six months after BNT162b2 mRNA vaccination | Scientific Reports Nature.com
  6. View Full Coverage on Google News

Read original article here

$99 Motorola Defy Satellite Link enables 2-way satellite communications on smartphones through 3GPP NTN technology – CNX Software

  1. $99 Motorola Defy Satellite Link enables 2-way satellite communications on smartphones through 3GPP NTN technology CNX Software
  2. Motorola unveils Defy 2, a rugged phone with satellite connectivity: Check price, specs and other details msnNOW
  3. Motorola Defy 2 is an affordable Android smartphone that features two-way satellite communication XDA Developers
  4. Mobile space race intensifies: New devices with satellite connectivity unveiled Interesting Engineering
  5. The new Motorola Defy 2 rugged phone is all about satellite messaging PhoneArena
  6. View Full Coverage on Google News

Read original article here

Google enables Matter on all Android devices, including Samsung’s

In a new post on its blog, Google has announced that Android, Google Home, and Google nest devices are now Matter-enabled. Some of the devices to get Matter support include Google Home, Google Home Mini, Nest Hub Max, Nest Hub (1st and 2nd gen), Nest Mini, Nest Audio, and Nest Wi-Fi Pro.

While the devices in the Google Nest and Google Home lineups are getting support for Matter through a firmware update (installed automatically), the company seems to be rolling out support for Matter to Android smartphones and tablets with an update to the Google Home app for the platform. It means that the next time you install or update the Google Home app on your Samsung Galaxy smartphone, tablet, or smartwatch, it will work with Matter-compatible smart home devices.

Matter is the new smart home connectivity standard

Matter is a new smart home connectivity standard that has been developed by a number of companies across the globe, including Amazon, Apple, Google, and Samsung, and is maintained by Connectivity Standards Alliance (CSA). Matter aims to enable people to connect smart home devices from various brands with each other easily.

Now that Google’s devices support the Matter standard, you can use them to set up or connect to any Matter-enabled smart home product. Google has also added Matter support for Fast Pair on Android. It allows you to connect Matter-enabled devices to your home network as quickly as you would pair a set of earphones.

Enhanced Multi-Admin with Samsung SmartThings in 2023

A couple of months ago, Google and Samsung announced Google Home-SmartThings integration using Matter’s Multi-Admin feature. It allows people to control smart products, which were set up through Google Home, to be controlled using Samsung SmartThings and vice versa.

Well, Google now says that it’s working with Samsung to offer an enhanced Multi-Admin feature in 2023. Additionally, Google will soon add iOS support to the Google Home app. It also says that we’ll get to see more Matter-enabled smart products in early 2023.

Read original article here

Tesla Autopilot now enables the car to perceive space around it

Tesla Autopilot is now enabling the car to perceive the space around it thanks to the development of its Occupancy Networks. Tesla’s Autopilot Software Director, Ashok Elluswamy, shared a detailed thread on Twitter about a recent workshop the Autopilot team held. He also shared the workshop on Twitter.

In the video and Twitter Thread, Ashok explained how Tesla developed Occupancy Networks to literally give the car a sense of its surroundings. Humans have the ability to understand the objects around them at any given time. Is that car down the road moving at a slow speed or a fast speed? Do I, a pedestrian, have enough time to get across the street before being hit? What is that in the middle of the road? What is that falling from the sky? I should move out the way.

These reactions to scenarios and split-second decisions come naturally to humans. Tesla’s Autopilot Team is working to program the vehicles to do the same thing and this will save lives. Imagine the car being able to correctly detect its surroundings while the driver isn’t even paying attention. An example is sudden unintended accelerations (SUA). Ashok pointed out that Autopilot prevents around 40 of these types of accidents daily.

The workshop was held in June at this year’s Conference on Computer Vision and Pattern Recognition (CVPR.) in New Orleans. Ashok explained that the team developed Occupancy Networks which enable the car to predict the volumetric occupancy of everything around it.

Ashok explained that the typical approaches such as image-space segmentation of free space or pixel-wise depth have many issues. The solution to those issues is Occupancy Networks.

In other words, Occupancy Networks enable the car to perceive the space around it and determine whether or not it can drive in that space. For example, if a UFO were to suddenly crash in front of you while you’re driving, you would react quickly in the safest way possible. This is what the Autopilot Team is training the software to do.

Ashok shared details of how Occupancy Networks used Neural Radience Fields (NeRFs). “The occupancy representation of these networks allows for differentiable rendering of images (based on the Neural Radiance Fields work). However, unlike typical NeRFs, which are per scene, these occupancy nets generalize across scenes.”

You can read Ashok’s full Twitter thread here and you can watch his presentation here. We are a little over a month before Tesla’s AI Day and I’m sure Tesla will share more about the life-saving technology it is working on as well as the Optimus Bot.

Dr. Know It All recently published a video about the new 10.69 update and shared his thought about Occupancy Network.

In a message on Twitter, he told me, “The beauty of Occupancy Networks is that the car doesn’t have to know what the objects it sees are, it just has to know that they are there in order to avoid them!”

Note: Johnna is a Tesla shareholder and supports its mission. 

Your feedback is important. If you have any comments, concerns, or see a typo, you can email me at johnna@teslarati.com. You can also reach me on Twitter @JohnnaCrider1

Tesla Autopilot now enables the car to perceive space around it








Read original article here

Brain Implant Enables Completely ‘Locked-In’ Man to Communicate Again

A pair of brain microchips could one day allow those in ‘pseudocomas’ to communicate whatever they want, a new breakthrough suggests.

In a first, a 34-year-old patient who lacked even the most subtle of muscle twitches has used the technology to share a few precious words with his family, using little more than an intent to move his eyes.

 

Similar devices have previously given patients with the fast-progressing condition amyotrophic lateral sclerosis (ALS) the means to send simple messages with extremely limited movements, but researchers say the severity of the man’s condition here represents a significant advancement for the technology. 

“To our knowledge, ours is the first study to achieve communication by someone who has no remaining voluntary movement and hence for whom the BCI is now the sole means of communication,” says neuroscientist Jonas Zimmermann from the Wyss Center in Switzerland.

A pseudocoma is also known as ‘locked-in’ syndrome, because while these patients cannot walk or talk, they are still very much conscious, capable of seeing, hearing, tasting, smelling, thinking, and feeling.

Without the ability to move the mouth or the tongue, however, communication is severely limited. If the eyes can still move, patients can sometimes blink or ‘point’ with their pupils to make themselves understood, but in some advanced cases, even that basic form of communication is out of reach.

The man in this case was one such patient. Within months of diagnosis with the condition, he had already lost the ability to walk and talk. A year later, the patient was placed on a ventilator to help him breathe. A year after that, he lost the ability to fix his gaze.

 

The extreme isolation ultimately led the patient and his family to agree to a cutting-edge experiment.

Before the patient lost the ability to move his eyes, he consented to a surgical procedure that would implant two microchips into the part of his brain that controls muscle movement.

Each chip was equipped with 64 needle-like electrodes, which could pick up on his conscious attempts to move. That brain activity was then sent to a computer, which translated the impulses into a ‘yes’ or ‘no’ signal.

In the past, similar brain implants have allowed some patients with ALS to communicate via a computer typing program. But this is the first time an ALS patient without the ability to so much as use their eyes has been able to do something similar. 

“People have really doubted whether this was even feasible,” Mariska Vansteensel, a brain-computer interface researcher who was not involved in the study, told Science.

(Chaudhary et al., Nature Communications, 2022)

Above: The experimental setup of the brain implants, plus the biofeedback device and the spelling program.

The technique took months of training, but once the patient learned how to control the firing rates of his brain signals, he was able to respond to a spelling program and select specific letters, spoken out loud by the program, to form words and even sentences.

 

Each letter the patient heard took about a minute for the patient to respond to, making for slow progress, but nonetheless, for the first time in a long time, the device allowed this man to express himself.

The accuracy of the technology is still not perfect. The patient could only signal ‘yes’ or ‘no’ about 80 percent of the time, with about 80 percent accuracy. Some days he could only generate words, not sentences.

“These apparent poor performances are primarily due to the completely auditory nature of these systems, which are intrinsically slower than a system based on visual feedback,” the authors write in their study.

The first phrase the ALS patient successfully spelled out was a ‘thank you’ to the lead neurobiologist on his case, Niels Birbaumer.

Then, came a slew of requests for his care, like “Mom head massage” and “I would like to listen to the album by Tool [a band] loud”. 

Then, 247 days after the surgical procedure, the patient gave his verdict on the device: “Boys, it works so effortlessly”. 

On day 251 he sent a message to his kid: “I love my cool son”. He then asked his child to watch a Disney film with him. 

 

On day 462, the patient expressed that his “biggest wish is a new bed”, and that the next day he could go with his loved ones to a barbecue.

“If someone is forming sentences like this, I would say it is positive. Even if it is not positive, it is not negative,” first author of the study Ujwal Chaudhary told The Guardian.

“One time when I was there, he said, ‘Thank you for everything, sister’ [to his sister, who helps care for him]. It was an emotional moment.”

The ability for someone in a pseudocoma to communicate obviously comes with a whole slew of ethical considerations.

After all, who condones the initial insertion? And once a person has learned to communicate again, can they speak for themselves and the future of their care? How accurate do these systems need to be before we can adequately interpret what patients are telling us?

We don’t have rules or outlines for this type of technology quite yet, but if the device turns out to be useful for other patients, we will need to start confronting these quandaries.

Giving advanced ALS patients their voices back could be a huge medical breakthrough and a great relief for individuals and their families. How we respond to those voices is up to us.

The study was published in Nature Communications.

 

Read original article here

Spinal Implant Enables Paralyzed Man With Severed Spine to Walk Again

In 2017, Michel Roccati was in a motorbike accident that left his lower body completely paralyzed. In 2020, he walked again, thanks to a breakthrough new spinal cord implant.

The implant sends electrical pulses to his muscles, mimicking the action of the brain, and could one day help people with severe spinal injuries stand, walk, and exercise.

 

It builds on long-running research into using electrical pulses to improve quality of life for people with spinal cord injuries, including a 2018 study by the same team that helped people with partial lower-body paralysis walk again.

“It was a very emotional experience,” Roccati told journalists of the first time the electrical pulses were activated and he took a step.

He was one of three patients involved in the study, published Monday in the journal Nature Medicine, all of them unable to move their lower bodies after accidents.

But the three were able to take steps shortly after the six-centimeter implant was inserted and its pulses were fine-tuned.

“These electrodes were longer and larger than the ones we had previously implanted, and we could access more muscles thanks to this new technology,” said Jocelyne Bloch, a neurosurgeon at the Lausanne University Hospital who helped lead the trial.

Those initial steps, while breathtaking for the researchers and their patients, were difficult and required support bars and significant upper body strength.

But the patients could start rehabilitation immediately, and within four months Roccati could walk with only a frame for balance.

 

“It’s not that it’s a miracle right away, not by far,” cautioned Gregoire Courtine, a neuroscientist at the Swiss Federal Institute of Technology who led the research with Bloch.

Roccati is now “able to stand for two hours – he walks almost one kilometer without stopping”.

The Italian described being able to look clients in the eye, have a drink at a standing table and take a shower standing up thanks to the implant.

He and others in the trial were also able to climb stairs, swim, and canoe.

‘Bright future’

The improvements depend on the electrical stimulation, which is triggered via a computer carried by the patient that activates a pattern of pulses.

Two of the patients can now activate their muscles slightly without electrical pulses, but only minimally.

The three men had all been injured at least a year before the study and Bloch said the team hopes to trial the technology with people sooner after an accident.

“What we all think is that if you try earlier it will have more effect,” she said.

 

There are challenges: In early recovery a patient’s capacity is still in flux, making it hard to set a baseline from which to measure progress, and ongoing medical treatment and pain could hamper rehabilitation.

So far, the implants are also only suitable for those with an injury above the lower thoracic spinal cord, the section running from the base of the neck to the abdomen, because six centimeters of healthy spinal cord is needed.

The idea of using electrical pulses to address paralysis stemmed from technology used to regulate pain, and the researchers said they see scope for further applications.

They have also shown it can regulate low blood pressure in spinal cord injury patients and plan to soon release a study on its use for severe Parkinson’s disease.

The team cautioned that significant work remains before the implant is available for treatment outside clinical studies, with Bloch saying she and Courtine receive around five messages a day from would-be patients seeking help.

They next plan to miniaturize the computer that activates the pulses so it too can be implanted in patients and controlled with a smartphone.

They expect this to be possible this year, and have plans for large-scale trials involving 50-100 patients in the United States and then Europe.

“We believe there is a bright future for neurological stimulation technology,” said Courtine.

“We’ll do (it) as fast as we can.”

© Agence France-Presse

 

Read original article here

Google app beta enables Material You weather widgets

In a very welcome change from what we previously expected, the Google Weather Material You widgets are now live on existing Pixel phones with the latest Google app beta.

Earlier today, Google app 12.40 fixed At a Glance weather in the Pixel Launcher on Android 12 Beta 5. The 12.41 beta enables the two Google Weather widgets with Material You that we’ve been tracking for the past few weeks.

There are two available designs — both named “Weather” — measuring 3×3 by default. That said, both can shrink down to 3×2 though neither shape actually grows. Users only get to adjust the padding.

The square with rounded corners starts by displaying the current condition in the top-left. Your location — an abbreviation is used for longer city names, is in the top-right. You then get the current temperature and high/low. There’s also the diagonal pill with just the temperature and condition icon. It’s quite large and very glanceable, with both respecting Dynamic Color theming.

Meanwhile, there are peculiar landscape orientations that squish the widgets into pills, and no settings to show locations besides your current one.

They were first spotted in advertising for the Pixel 6. This is not a server-side update with version 12.40 not triggering, while Android 12 is required.

In enabling last month, we observed that the widgets checked whether your device was a Pixel 6 or Pixel 6 Pro before appearing. We also noted that support for other Google phones was being prepared, but believed that the first requirement implied some initial device exclusivity. 

As evidenced by today’s launch — on a Pixel 5 in our case, the original speculation was incorrect or something changed in development over the past three weeks. Whatever the case, the wider launch is much appreciated by current device owners. 

More Material You:

Thanks Dee!

FTC: We use income earning auto affiliate links. More.


Check out 9to5Google on YouTube for more news:

Read original article here

Synthetic biology enables microbes to build muscle

Researchers at the McKelvey School of Engineering at Washington University in St. Louis have developed a synthetic chemistry approach to polymerize proteins inside of engineered microbes. This enabled the microbes to produce the high molecular weight muscle protein, titin, which was then spun into fibers. In the future, such material could be used for clothing, or even for protective gear. Credit: Washington University in St. Louis

Would you wear clothing made of muscle fibers? Use them to tie your shoes or even wear them as a belt? It may sound a bit odd, but if those fibers could endure more energy before breaking than cotton, silk, nylon, or even Kevlar, then why not?

Don’t worry, this muscle could be produced without harming a single animal.

Researchers at the McKelvey School of Engineering at Washington University in St. Louis have developed a synthetic chemistry approach to polymerize proteins inside of engineered microbes. This enabled the microbes to produce the high molecular weight muscle protein, titin, which was then spun into fibers.

Their research was published Monday, August 30 in the journal Nature Communications.

Also: “Its production can be cheap and scalable. It may enable many applications that people had previously thought about, but with natural muscle fibers,” said Fuzhong Zhang, professor in the Department of Energy, Environmental & Chemical Engineering. Now, these applications may come to fruition without the need for actual animal tissues.

The synthetic muscle protein produced in Zhang’s lab is titin, one of the three major protein components of muscle tissue. Critical to its mechanical properties is the large molecular size of titin. “It’s the largest known protein in nature,” said Cameron Sargent, a Ph.D. student in the Division of Biological and Biomedical Sciences and a first author on the paper along with Christopher Bowen, a recent Ph.D. graduate of the Department of Energy, Environmental & Chemical Engineering.

Muscle fibers have been of interest for a long time, Zhang said. Researchers have been trying to design materials with similar properties to muscles for various applications, such as in soft robotics. “We wondered, ‘Why don’t we just directly make synthetic muscles?'” he said. “But we’re not going to harvest them from animals, we’ll use microbes to do it.”

To circumvent some of the issues that typically prevent bacteria from producing large proteins, the research team engineered bacteria to piece together smaller segments of the protein into ultra-high molecular weight polymers around two megadaltons in size—about 50 times the size of an average bacterial protein. They then used a wet-spinning process to convert the proteins into fibers that were around ten microns in diameter, or a tenth the thickness of human hair.

Working with collaborators Young Shin Jun, professor in the Department of Energy, Environmental & Chemical Engineering, and Sinan Keten, professor in the Department of Mechanical Engineering at Northwestern University, the group then analyzed the structure of these fibers to identify the molecular mechanisms that enable their unique combination of exceptional toughness, strength, and damping capacity, or the ability to dissipate mechanical energy as heat.

Aside from fancy clothes or protective armor (again, the fibers are tougher than Kevlar, the material used in bulletproof vests), Sargent pointed out that this material has many potential biomedical applications as well. Because it’s nearly identical to the proteins found in muscle tissue, this synthetic material is presumably biocompatible and could therefore be a great material for sutures, tissue engineering, and so on.

Zhang’s research team doesn’t intend to stop with synthetic muscle fiber. The future will likely hold more unique materials enabled by their microbial synthesis strategy. Bowen, Cameron, and Zhang have filed a patent application based on the research.

“The beauty of the system is that it’s really a platform that can be applied anywhere,” Sargent said. “We can take proteins from different natural contexts, then put them into this platform for polymerization and create larger, longer proteins for various material applications with a greater sustainability.”


Microbially produced fibers: Stronger than steel, tougher than Kevlar


More information:
Microbial production of megadalton titin yields fibers with advantageous mechanical properties, Nature Communications (2021). DOI: 10.1038/s41467-021-25360-6
Provided by
Washington University in St. Louis

Citation:
Synthetic biology enables microbes to build muscle (2021, August 30)
retrieved 30 August 2021
from https://phys.org/news/2021-08-synthetic-biology-enables-microbes-muscle.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.



Read original article here

Stanford Device Enables Thousands of Synthetic DNA Enzyme Experiments To Run Simultaneously

HT-MEK – short for High-Throughput Microfluidic Enzyme Kinetics – combines microfluidics and cell-free protein synthesis technologies to dramatically speed up the study of enzymes. Credit: Daniel Mokhtari

A new tool that enables thousands of tiny experiments to run simultaneously on a single polymer chip will let scientists study enzymes faster and more comprehensively than ever before.

For much of human history, animals and plants were perceived to follow a different set of rules than rest of the universe. In the 18th and 19th centuries, this culminated in a belief that living organisms were infused by a non-physical energy or “life force” that allowed them to perform remarkable transformations that couldn’t be explained by conventional chemistry or physics alone.

Scientists now understand that these transformations are powered by enzymes – protein molecules comprised of chains of amino acids that act to speed up, or catalyze, the conversion of one kind of molecule (substrates) into another (products). In so doing, they enable reactions such as digestion and fermentation – and all of the chemical events that happen in every one of our cells – that, left alone, would happen extraordinarily slowly.

“A chemical reaction that would take longer than the lifetime of the universe to happen on its own can occur in seconds with the aid of enzymes,” said Polly Fordyce, an assistant professor of bioengineering and of genetics at Stanford University.

While much is now known about enzymes, including their structures and the chemical groups they use to facilitate reactions, the details surrounding how their forms connect to their functions, and how they pull off their biochemical wizardry with such extraordinary speed and specificity are still not well understood.

A new technique, developed by Fordyce and her colleagues at Stanford and detailed this week in the journal Science, could help change that. Dubbed HT-MEK — short for High-Throughput Microfluidic Enzyme Kinetics — the technique can compress years of work into just a few weeks by enabling thousands of enzyme experiments to be performed simultaneously. “Limits in our ability to do enough experiments have prevented us from truly dissecting and understanding enzymes,” said study co-leader Dan Herschlag, a professor of biochemistry at Stanford’s School of Medicine.

Closeup image of the HT-MEK device shows the individual nanoliter-sized chambers where enzyme experiments are performed. Credit: Daniel Mokhtari

By allowing scientists to deeply probe beyond the small “active site” of an enzyme where substrate binding occurs, HT-MEK could reveal clues about how even the most distant parts of enzymes work together to achieve their remarkable reactivity.

“It’s like we’re now taking a flashlight and instead of just shining it on the active site we’re shining it over the entire enzyme,” Fordyce said. “When we did this, we saw a lot of things we didn’t expect.”

Enzymatic tricks

HT-MEK is designed to replace a laborious process for purifying enzymes that has traditionally involved engineering bacteria to produce a particular enzyme, growing them in large beakers, bursting open the microbes and then isolating the enzyme of interest from all the other unwanted cellular components. To piece together how an enzyme works, scientists introduce intentional mistakes into its DNA blueprint and then analyze how these mutations affect catalysis.

This process is expensive and time consuming, however, so like an audience raptly focused on the hands of a magician during a conjuring trick, researchers have mostly limited their scientific investigations to the active sites of enzymes. “We know a lot about the part of the enzyme where the chemistry occurs because people have made mutations there to see what happens. But that’s taken decades,” Fordyce said.

But as any connoisseur of magic tricks knows, the key to a successful illusion can lie not just in the actions of the magician’s fingers, but might also involve the deft positioning of an arm or the torso, a misdirecting patter or discrete actions happening offstage, invisible to the audience. HT-MEK allows scientists to easily shift their gaze to parts of the enzyme beyond the active site and to explore how, for example, changing the shape of an enzyme’s surface might affect the workings of its interior.

“We ultimately would like to do enzymatic tricks ourselves,” Fordyce said. “But the first step is figuring out how it’s done before we can teach ourselves to do it.”

Enzyme experiments on a chip

The technology behind HT-MEK was developed and refined over six years through a partnership between the labs of Fordyce and Herschlag. “This is an amazing case of engineering and enzymology coming together to — we hope — revolutionize a field,” Herschlag said. “This project went beyond your typical collaboration — it was a group of people working jointly to solve a very difficult problem — and continues with the methodologies in place to try to answer difficult questions.”

HT-MEK combines two existing technologies to rapidly speed up enzyme analysis. The first is microfluidics, which involves molding polymer chips to create microscopic channels for the precise manipulation of fluids. “Microfluidics shrinks the physical space to do these fluidic experiments in the same way that integrated circuits reduced the real estate needed for computing,” Fordyce said. “In enzymology, we are still doing things in these giant liter-sized flasks. Everything is a huge volume and we can’t do many things at once.”

The second is cell-free protein synthesis, a technology that takes only those crucial pieces of biological machinery required for protein production and combines them into a soupy extract that can be used to create enzymes synthetically, without requiring living cells to serve as incubators.

“We’ve automated it so that we can use printers to deposit microscopic spots of synthetic DNA coding for the enzyme that we want onto a slide and then align nanoliter-sized chambers filled with the protein starter mix over the spots,” Fordyce explained.

The scientists used HT-MEK to study how mutations to different parts of a well-studied enzyme called PafA affected its catalytic ability. Credit: Daniel Mokhtari

Because each tiny chamber contains only a thousandth of a millionth of a liter of material, the scientists can engineer thousands of variants of an enzyme in a single device and study them in parallel. By tweaking the DNA instructions in each chamber, they can modify the chains of amino acid molecules that comprise the enzyme. In this way, it’s possible to systematically study how different modifications to an enzyme affects its folding, catalytic ability and ability to bind small molecules and other proteins.

When the team applied their technique to a well-studied enzyme called PafA, they found that mutations well beyond the active site affected its ability to catalyze chemical reactions — indeed, most of the amino acids, or “residues,” making up the enzyme had effects.

The scientists also discovered that a surprising number of mutations caused PafA to misfold into an alternate state that was unable to perform catalysis. “Biochemists have known for decades that misfolding can occur but it’s been extremely difficult to identify these cases and even more difficult to quantitatively estimate the amount of this misfolded stuff,” said study co-first author Craig Markin, a research scientist with joint appointments in the Fordyce and Herschlag labs.

“This is one enzyme out of thousands and thousands,” Herschlag emphasized. “We expect there to be more discoveries and more surprises.”

Accelerating advances

If widely adopted, HT-MEK could not only improve our basic understanding of enzyme function, but also catalyze advances in medicine and industry, the researchers say. “A lot of the industrial chemicals we use now are bad for the environment and are not sustainable. But enzymes work most effectively in the most environmentally benign substance we have — water,” said study co-first author Daniel Mokhtari, a Stanford graduate student in the Herschlag and Fordyce labs.

HT-MEK could also accelerate an approach to drug development called allosteric targeting, which aims to increase drug specificity by targeting beyond an enzyme’s active site. Enzymes are popular pharmaceutical targets because of the key role they play in biological processes. But some are considered “undruggable” because they belong to families of related enzymes that share the same or very similar active sites, and targeting them can lead to side effects. The idea behind allosteric targeting is to create drugs that can bind to parts of enzymes that tend to be more differentiated, like their surfaces, but still control particular aspects of catalysis. “With PafA, we saw functional connectivity between the surface and the active site, so that gives us hope that other enzymes will have similar targets,” Markin said. “If we can identify where allosteric targets are, then we’ll be able to start on the harder job of actually designing drugs for them.”

The sheer amount of data that HT-MEK is expected to generate will also be a boon to computational approaches and machine learning algorithms, like the Google-funded AlphaFold project, designed to deduce an enzyme’s complicated 3D shape from its amino acid sequence alone. “If machine learning is to have any chance of accurately predicting enzyme function, it will need the kind of data HT-MEK can provide to train on,” Mokhtari said.

Much further down the road, HT-MEK may even allow scientists to reverse-engineer enzymes and design bespoke varieties of their own. “Plastics are a great example,” Fordyce said. “We would love to create enzymes that can degrade plastics into nontoxic and harmless pieces. If it were really true that the only part of an enzyme that matters is its active site, then we’d be able to do that and more already. Many people have tried and failed, and it’s thought that one reason why we can’t is because the rest of the enzyme is important for getting the active site in just the right shape and to wiggle in just the right way.”

Herschlag hopes that adoption of HT-MEK among scientists will be swift. “If you’re an enzymologist trying to learn about a new enzyme and you have the opportunity to look at 5 or 10 mutations over six months or 100 or 1,000 mutants of your enzyme over the same period, which would you choose?” he said. “This is a tool that has the potential to supplant traditional methods for an entire community.”

Reference: “Revealing enzyme functional architecture via high-throughput microfluidic enzyme kinetics” by C. J. Markin, D. A. Mokhtari, F. Sunden, M. J. Appel, E. Akiva, S. A. Longwell, C. Sabatti, D. Herschlag and P. M. Fordyce, 23 July 2021, Science.
DOI: 10.1126/science.abf8761

Fordyce is a member of Stanford Bio-X and the Wu Tsai Neurosciences Institute, and an executive committee member of Stanford ChEM-H. Herschlag is member of Bio-X and the Stanford Cancer Institute, and a faculty fellow of ChEM-H. Other Stanford co-authors include Fanny Sunden, Mason Appel, Eyal Akiva, Scott Longwell, and Chiara Sabatti.

The research was funded by Stanford Bio-X, Stanford ChEM-H, the Stanford Medical Scientist Training Program, the National Institutes of Health, the Joint Initiative for Metrology in Biology, the Gordon and Betty Moore Foundation, the Alfred P. Sloan Foundation, the Chan Zuckerberg Biohub, and the Canadian Institutes of Health Research.



Read original article here