Tag Archives: captures

NASA captures photo of ‘bear’s face’ on the surface of Mars

A strange formation that resembles a bear’s face was captured on the surface of the Red Planet by NASA’s Mars Reconnaissance Orbiter last month. 

Two perfectly placed craters make up the eyes, a hill with a “V-shaped collapse structure” makes up the nose, and a circular fracture pattern forms the head, according to the University of Arizona’s Lunar and Planetary Laboratory, which controls the orbiter’s camera. 

“The circular fracture pattern might be due to the settling of a deposit over a buried impact crater,” the lab explained. “Maybe the nose is a volcanic or mud vent and the deposit could be lava or mud flows?”

The University of Arizona released this photo of a formation on the surface of Mars that resembles a bear’s face. 
(NASA/JPL-Caltech/UArizona)

The Mars Reconnaissance Orbiter, which lifted off from Earth in 2005, is just one of multiple spacecrafts NASA is using to explore the Red Planet. 

NASA MARS ROVER DISCOVERS WEIRD STRING-LIKE OBJECT THAT GOES VIRAL

Last year, the Curiosity rover snapped a photo of what appears to be a door carved into the otherworldly landscape. The internet went wild with speculation, but the Curiosity team later clarified that it’s just “a natural geologic feature.”

NASA’s Curiosity rover took a photograph of what appears to be a door on Mars last year. 
(NASA)

CLICK HERE TO GET THE FOX NEWS APP

NASA retired the InSight Mars lander after four years on the planet last month after it ran out of power. 

Perseverance, NASA’s other rover on the Red Planet, has been collecting rock samples with its robotic arm and exploring Mars’ landscape since 2021. 



Read original article here

Webb Telescope Captures Countless Galaxies in New Image

The European Space Agency has released its image of the month for January, and it is (perhaps unsurprisingly) a stunning shot from the Webb Space Telescope.

At the bottom of the image is LEDA 2046648, a spiral galaxy over one billion light-years from Earth in the constellation Hercules. Behind LEDA is a field of more distant galaxies, ranging from spiral shapes to pinpricks of light in the distant universe.

Webb launched from French Guiana in December 2021; its scientific observations of the cosmos began in July. Webb has imaged distant galaxies, exoplanets, and even shed new light on worlds in our local solar system.

Though this image was only just released, it was taken during the commissioning process for one of Webb’s instruments, the Near-Infrared Imager and Slitless Spectrograph (NIRISS), according to an ESA release. While NIRISS was focused on a white dwarf—the core remnant of a star—Webb’s Near-Infrared Camera (NIRCam) turned its focus to LEDA 2046648 and its environs in the night sky.

One of Webb’s primary objectives in looking at the distant universe is to better understand how the first stars and galaxies formed. To that end, the telescope is looking at some of the most ancient light in the universe, primarily through its instruments NIRCam and MIRI.

The image does contains hundreds of light sources our eye can perceive, but the infrared data from which the image was formed certainly records many more galaxies.

Webb’s deep field imagery is what enables scientists to see some of the most ancient light in the universe, often capitalizing on gravitational lensing (the magnification of distant light due to the gravitational warping of spacetime) to see particularly ancient sources.

Though this shot of LEDA 2046648 is not a deep field, it evokes a similar feeling: awe, at the huge scale of the cosmos, and (if only briefly) the realization that our minds can only comprehend a fraction of it.

More: Zoom in on Webb Telescope’s Biggest Image Yet

Read original article here

Webb Telescope Captures Countless Galaxies in New Image

The distant spiral galaxy LEDA 2046648.

The European Space Agency has released its image of the month for January, and it is (perhaps unsurprisingly) a stunning shot from the Webb Space Telescope.

At the bottom of the image is LEDA 2046648, a spiral galaxy over one billion light-years from Earth in the constellation Hercules. Behind LEDA is a field of more distant galaxies, ranging from spiral shapes to pinpricks of light in the distant universe.

Read more

Webb launched from French Guiana in December 2021; its scientific observations of the cosmos began in July. Webb has imaged distant galaxies, exoplanets, and even shed new light on worlds in our local solar system.

Though this image was only just released, it was taken during the commissioning process for one of Webb’s instruments, the Near-Infrared Imager and Slitless Spectrograph (NIRISS), according to an ESA release. While NIRISS was focused on a white dwarf—the core remnant of a star—Webb’s Near-Infrared Camera (NIRCam) turned its focus to LEDA 2046648 and its environs in the night sky.

One of Webb’s primary objectives in looking at the distant universe is to better understand how the first stars and galaxies formed. To that end, the telescope is looking at some of the most ancient light in the universe, primarily through its instruments NIRCam and MIRI.

The image does contains hundreds of light sources our eye can perceive, but the infrared data from which the image was formed certainly records many more galaxies.

Webb’s deep field imagery is what enables scientists to see some of the most ancient light in the universe, often capitalizing on gravitational lensing (the magnification of distant light due to the gravitational warping of spacetime) to see particularly ancient sources.

Though this shot of LEDA 2046648 is not a deep field, it evokes a similar feeling: awe, at the huge scale of the cosmos, and (if only briefly) the realization that our minds can only comprehend a fraction of it.

More: Zoom in on Webb Telescope’s Biggest Image Yet

More from Gizmodo

Sign up for Gizmodo’s Newsletter. For the latest news, Facebook, Twitter and Instagram.

Click here to read the full article.



Read original article here

NASA’s Perseverance Rover Completes Mars Sample Depot – Captures Amazing Variety of Martian Geology

Perseverance’s Three Forks Sample Depot Selfie: NASA’s Perseverance Mars rover took a selfie with several of the 10 sample tubes it deposited at a sample depot it is creating within an area of Jezero Crater nicknamed “Three Forks.” Credits: NASA/JPL-Caltech/MSSS

Ten sample tubes, capturing an amazing variety of Martian geology, have been deposited on

Throughout its science campaigns, the rover has been taking a pair of samples from rocks the mission team deems scientifically significant. One sample from each pair taken so far now sits in the carefully arranged depot in the “Three Forks” region of Jezero Crater. The depot samples will serve as a backup set while the other half remain inside Perseverance, which would be the primary means to convey samples to a Sample Retrieval Lander as part of the campaign.

NASA Sample Retrieval Lander: This illustration shows a concept for a proposed NASA Sample Retrieval Lander that would carry a small rocket (about 10 feet, or 3 meters, tall) called the Mars Ascent Vehicle to the Martian surface. After being loaded with sealed tubes containing samples of Martian rocks and soil collected by NASA’s Perseverance rover, the rocket would launch into Mars orbit. The samples would then be ferried to Earth for detailed analysis. Credit: NASA/JPL-Caltech

Mission scientists believe the igneous and sedimentary rock cores provide an excellent cross-section of the geologic processes that took place in Jezero shortly after the crater’s formation almost 4 billion years ago. The rover also deposited an atmospheric sample and what’s called a “witness” tube, which is used to determine if samples being collected might be contaminated with materials that traveled with the rover from Earth.

The titanium tubes were deposited on the surface in an intricate zigzag pattern, with each sample about 15 to 50 feet (5 to 15 meters) apart from one another to ensure they could be safely recovered. Adding time to the depot-creation process, the team needed to precisely map the location of each 7-inch-long (18.6-centimeter-long) tube and glove (adapter) combination so that the samples could be found even if covered with dust. The depot is on flat ground near the base of the raised, fan-shaped ancient river delta that formed long ago when a river flowed into a lake there.

“With the Three Forks depot in our rearview mirror, Perseverance is now headed up the delta,” said Rick Welch, Perseverance’s deputy project manager at

WATSON Documents Final Tube Dropped at ‘Three Forks’ Sample Depot: NASA’s Perseverance Mars rover dropped the last of 10 tubes at the “Three Forks” sample depot on Jan. 28, 2023, the 690th Martian day, or sol, of the mission. Credits: NASA/JPL-Caltech/MSSS

Next Science Campaign

Passing the Rocky Top outcrop represents the end of the rover’s Delta Front Campaign and the beginning of the rover’s Delta Top Campaign because of the geologic transition that takes place at that level.

“We found that from the base of the delta up to the level where Rocky Top is located, the rocks appear to have been deposited in a lake environment,” said Ken Farley, Perseverance project scientist at Caltech. “And those just above Rocky Top appear to have been created in or at the end of a Martian river flowing into the lake. As we ascend the delta into a river setting, we expect to move into rocks that are composed of larger grains – from sand to large boulders. Those materials likely originated in rocks outside of Jezero, eroded and then washed into the crater.”

Perseverance’s ‘Three Forks’ Sample Depot Map: This map shows where NASA’s Perseverance Mars rover dropped each of its 10 samples – one half of every pair taken so far – so that a future mission could pick them up. After five weeks of work, the sample depot was completed Jan. 24, 2023, the 687th day, or sol, of the mission. Credits: NASA/JPL-Caltech

One of the first stops the rover will make during the new science campaign is at a location the science team calls the “Curvilinear Unit.” Essentially a Martian sandbar, the unit is made of sediment that eons ago was deposited in a bend in one of Jezero’s inflowing river channels. The science team believes the Curvilinear Unit will be an excellent location to hunt for intriguing outcrops of sandstone and perhaps mudstone, and to get a glimpse at the geological processes beyond the walls of Jezero Crater.

More About the Mission

One of the key objectives for Perseverance’s mission on Mars is astrobiology, including caching samples that may contain signs of ancient microbial life. The rover will analyze the planet’s geology and past climate, lay the foundation for human exploration of the Red Planet, and be the first mission to gather Martian rock and soil samples.

Later NASA missions, in cooperation with ESA, will send spacecraft to Mars to collect these sealed samples from the surface and return them to Earth for in-depth analysis.

The Mars 2020 Perseverance mission is part of NASA’s Moon to Mars exploration approach, which includes Artemis missions to the Moon that will help pave the way for human exploration of the Red Planet.

JPL, which is managed for NASA by Caltech, built and manages operations of the Perseverance rover.



Read original article here