Tag Archives: bec

Helen Mirren responds to ‘Jewface’ backlash over Golda Meir and reveals she thinks she has Jewish ancestry bec – Daily Mail

  1. Helen Mirren responds to ‘Jewface’ backlash over Golda Meir and reveals she thinks she has Jewish ancestry bec Daily Mail
  2. Helen Mirren Rails Against “Authoritarians” Telling Writers They Can Only Tell Stories About Their Own Race Or Religion Deadline
  3. Helen Mirren addresses Golda controversy: ‘I told the director that I’m not Jewish’ The Guardian
  4. Helen Mirren defends Bradley Cooper’s prosthetic nose in ‘Maestro’ The Times of Israel
  5. Helen Mirren Responds to Criticism of Her Role as Israeli Prime Minister in ‘Golda’ Just Jared
  6. View Full Coverage on Google News

Read original article here

Physicists Say They’ve Built an Atom Laser That Can Run ‘Forever’

A new breakthrough has allowed physicists to create a beam of atoms that behaves the same way as a laser, and that can theoretically stay on “forever”.

This might finally mean the technology is on its way to practical application, although significant limitations still apply.

 

Nevertheless, this is a huge step forward for what is known as an “atom laser” – a beam made of atoms marching as a single wave that could one day be used for testing fundamental physical constants, and engineering precision technology.

Atom lasers have been around for a minute. The first atom laser was created by a team of MIT physicists back in 1996. The concept sounds pretty simple: just as a traditional light-based laser consists of photons moving with their waves in sync, a laser made of atoms would require their own wave-like nature to align before being shuffled out as a beam.

As with many things in science, however, it is easier to conceptualize than to realize. At the root of the atom laser is a state of matter called a Bose-Einstein condensate, or BEC.

A BEC is created by cooling a cloud of bosons to just a fraction above absolute zero. At such low temperatures, the atoms sink to their lowest possible energy state without stopping completely.

When they reach these low energies, the particles’ quantum properties can no longer interfere with each other; they move close enough to each other to sort of overlap, resulting in a high-density cloud of atoms that behaves like one ‘super atom’ or matter wave.

 

However, BECs are something of a paradox. They’re very fragile; even light can destroy a BEC. Given that the atoms in a BEC are cooled using optical lasers, this usually means that a BEC’s existence is fleeting.

Atom lasers that scientists have managed to achieve to date have been of the pulsed, rather than continuous variety; and involve firing off just one pulse before a new BEC needs to be generated.

In order to create a continuous BEC, a team of researchers at the University of Amsterdam in the Netherlands realized something needed to change.

“In previous experiments, the gradual cooling of atoms was all done in one place. In our setup, we decided to spread the cooling steps not over time, but in space: we make the atoms move while they progress through consecutive cooling steps,” explained physicist Florian Schreck.

“In the end, ultracold atoms arrive at the heart of the experiment, where they can be used to form coherent matter waves in a BEC. But while these atoms are being used, new atoms are already on their way to replenish the BEC. In this way, we can keep the process going – essentially forever.”

 

That ‘heart of the experiment’ is a trap that keeps the BEC shielded from light, a reservoir that can be continuously replenished for as long as the experiment runs.

Protecting the BEC from the light produced by the cooling laser, however, while simple in theory, was again a bit more difficult in practice. Not only were there technical hurdles, but there were also bureaucratic and administrative ones too.

“On moving to Amsterdam in 2013, we began with a leap of faith, borrowed funds, an empty room, and a team entirely funded by personal grants,” said physicist Chun-Chia Chen, who led the research.

“Six years later, in the early hours of Christmas morning 2019, the experiment was finally on the verge of working. We had the idea of adding an extra laser beam to solve a last technical difficulty, and instantly every image we took showed a BEC, the first continuous-wave BEC.”

Now that the first part of the continuous atom laser has been realized – the “continuous atom” part – the next step, the team said, is working on maintaining a stable atom beam. They could achieve this by transferring the atoms to an untrapped state, thereby extracting a propagating matter wave.

Because they used strontium atoms, a popular choice for BECs, the prospect opens exciting opportunities, they said. Atom interferometry using strontium BECs, for example, could be used to conduct investigations of relativity and quantum mechanics, or detect gravitational waves.

“Our experiment is the matter wave analogue of a continuous-wave optical laser with fully reflective cavity mirrors,” the researchers wrote in their paper. 

“This proof-of-principle demonstration provides a new, hitherto missing piece of atom optics, enabling the construction of continuous coherent-matter-wave devices.”

The research has been published in Nature.

 

Read original article here

Physicists Shattered The Record For Coldest Temperature Ever Achieved in a Lab

Scientists just broke the record for the coldest temperature ever measured in a lab: They achieved the bone-chilling temperature of 38 trillionths of a degree above -273.15 Celsius by dropping magnetized gas 393 feet (120 meters) down a tower.

 

The team of German researchers was investigating the quantum properties of a so-called fifth state of matter: Bose-Einstein condensate (BEC), a derivative of gas that exists only under ultra-cold conditions.

While in the BEC phase, matter itself begins to behave like one large atom, making it an especially appealing subject for quantum physicists who are interested in the mechanics of subatomic particles.

Temperature is a measure of molecular vibration – the more a collection of molecules moves, the higher the collective temperature.

Absolute zero, then, is the point at which all molecular motion stops – minus 459.67 degrees Fahrenheit, or minus 273.15 degrees C. Scientists have even developed a special scale for extremely cold temperatures, called the Kelvin scale, where zero Kelvin corresponds to absolute zero.

Near absolute zero, some weird things start to happen. For example, light becomes a liquid that can literally be poured into a container, according to research published in 2017 in the journal Nature Physics. Supercooled helium stops experiencing friction at very low temperatures, according to a study published in 2017 in the journal Nature Communications. And in NASA’s Cold Atom Lab, researchers have even witnessed atoms existing in two places at once.

 

In this record-breaking experiment, scientists trapped a cloud of around 100,000 gaseous rubidium atoms in a magnetic field inside a vacuum chamber. Then, they cooled the chamber way down, to around 2 billionths of a degree Celsius above absolute zero, which would have been a world record in itself, according to NewAtlas. 

But this wasn’t quite frigid enough for the researchers, who wanted to push the limits of physics; to get even colder, they needed to mimic deep-space conditions. So the team took their setup to the European Space Agency’s Bremen drop tower, a microgravity research center at the University of Bremen in Germany.

By dropping the vacuum chamber into a free fall while switching the magnetic field on and off rapidly, allowing the BEC to float uninhibited by gravity, they slowed the rubidium atoms’ molecular motion to almost nothing.

The resulting BEC stayed at 38 picokelvins – 38 trillionths of a Kelvin – for about 2 seconds, setting “an absolute minus record”, the team reported Aug. 30 in the journal Physical Review Letters.

The previous record of 36 millionths of a Kelvin, was achieved by scientists at the National Institute of Standards and Technology (NIST) in Boulder, Colorado with specialized lasers.

 

The coldest known natural place in the universe is the Boomerang Nebula, which lies in the Centaurus constellation, about 5,000 light years from Earth. Its average temperature is -272 C (about 1 Kelvin) according to the European Space Agency.

The researchers of the new study said in a statement that, theoretically, they could sustain this temperature for as long as 17 seconds under truly weightless conditions, like in space. Ultra cold temperatures may one day help scientists build better quantum computers, according to researchers at MIT. 

Related content:

7 ways Einstein changed the world

The 8 coldest places on Earth

The 15 weirdest galaxies in our universe

This article was originally published by Live Science. Read the original article here.

 

Read original article here