Tag Archives: Astronomys

The James Webb Space Telescope is astronomy’s shiny new toy, but the Hubble Space Telescope isn’t old news — it’s at its scientific peak

The Hubble Space Telescope launched in 1990 and has provided humanity a front-row seat to the cosmos for more than three decades.NASA

  • Since its launch in 1990, the Hubble Space Telescope has made revolutionary achievements in astronomy.

  • The new James Webb Space Telescope is popular, but Hubble has skills, like capturing visible and ultraviolet light, that Webb doesn’t.

  • The two telescopes will team up to study the cosmos in even greater detail.

For three decades, the Hubble Space Telescope has delivered breathtaking cosmic views.

As the world raves about NASA’s new James Webb Space Telescope, aging Hubble continues to be an astronomical workhorse, providing important observations of the universe, while Webb soaks up the spotlight.

But as a pair, the telescopes are even more powerful than they are alone. Together, the space-based telescopes will give astronomers a more complete view and understanding of galaxies, stars, and planets than ever before.

“The Webb Space Telescope is good news for astronomy, and good news for the Hubble Space Telescope as well, since Webb and Hubble enhance and complement each other’s unique capabilities,” Jennifer Wiseman, senior project scientist for the Hubble Space Telescope at NASA’s Goddard Space Flight Center, told Insider.

“Hubble’s science return is expected to be strong, and even enhanced throughout this decade as Webb and Hubble unveil the universe together.”

Hubble being deployed from Discovery in 1990.

Hubble being deployed from Discovery in 1990.NASA/IMAX

Since Galileo Galilei constructed his telescope in 1609, astronomers have turned these tools to the sky. Astronomers developed these instruments significantly over time, allowing them to peer even deeper into the universe.

But their observations were constrained by Earth’s atmosphere, which absorbs light before it reaches ground-based telescopes. Enter space-based telescopes. By sitting high above the distortion of Earth’s atmosphere and away from light-polluted cities, observatories like Hubble provide, as NASA puts it, “an unobstructed view of the universe.”

Hubble launched on the space shuttle Discovery on April 24, 1990. Though it was originally scheduled for only 15 years of service, it still zips through space about 340 miles above Earth’s surface, circling the planet every 97 minutes.

“Hubble is in good technical condition, even 32 years after its launch, with a strong suite of science instruments on board,” Wiseman said.

The Pillars of Creation in the Eagle Nebula, taken by the Hubble Space Telescope in 1995.NASA, Jeff Hester, and Paul Scowen (Arizona State University)

Over the years, Hubble’s images have played a significant part in our understanding of the universe. It provided evidence of supermassive black holes at the centers of galaxies and measurement of the expansion rate of the universe. Hubble also helped discover and characterize the mysterious dark energy causing that expansion by pulling galaxies apart. Among its most iconic achievements is its Pillars of Creation image, taken in 1995, which shows newly formed stars glowing in the Eagle Nebula.

And Hubble’s still taking stunning pictures, even after Webb began delivering images from its scientific observations in July. Recently, Hubble snapped an image of star-studded NGC 6540, a globular cluster in the constellation Sagittarius.

A globular cluster NGC 6540 in the constellation Sagittarius, which was captured by the Hubble Space Telescope.ESA/Hubble & NASA, R. Cohen

Both Webb and Hubble are space-based telescopes, but they differ in many ways. Hubble sees ultraviolet light, visible light, and a small slice of infrared, while Webb will primarily look at the universe in infrared.

Webb — which is 100 times more powerful than Hubble — will be able to peer at objects whose light was emitted more than 13.5 billion years ago, which Hubble can’t see. This is because this light has been shifted into the infrared wavelengths that Webb is specifically designed to detect.

But because Webb has been designed this way, it will also miss celestial objects in the visible and ultraviolet light that Hubble can see.

“In fact, Hubble is the only major class observatory that can access UV wavelengths,” Wiseman said.

A deep field image from the Hubble space telescope, left, and a deep field image from the James Webb Space Telescope, right.NASA/STScI; NASA/ESA/CSA/STScI

While Webb has been referred to as Hubble’s successor, the two space-based observatories will be teaming up to unveil the universe together.

Wiseman points to how they’ll provide insights into how stars are born within the clouds of cosmic dust and scattered throughout most galaxies. “Hubble, for example, can detect and analyze in detail the hot blue and UV light blazing from star-forming nebulae in nearby galaxies,” Wiseman said, adding, “That can be compared to the vigor of star formation in the early universe as detected with Webb.”

The two space-based telescopes will also combine their gazes to peer at the atmospheres of other worlds, looking for signs they might harbor life.

Astronomers typically look for the ingredients that sustain earthly life — liquid water, a continuous source of energy, carbon, and other elements — when hunting for life-supporting planets. In 2001, Hubble made the first direct measurement of an exoplanet’s atmosphere.

“In our own galaxy, the understanding of planets within and beyond our own solar system will be greatly enhanced with the Webb and Hubble combo,” Wiseman said, adding, “Signatures of water, methane, and other atmospheric constituents will be identified using the combined spectroscopic capabilities of Webb and Hubble.”

In 2001, Hubble made the first direct detection of an atmosphere of world orbiting a star beyond our solar system. Artist’s impression of the planet, which orbits a star called HD 209458.G. Bacon (STScI/AVL)

And though Webb may be seen as the shiny new toy in astronomy, Hubble’s unique capabilities in capturing visible and ultraviolet light still make it a sought-after tool for understanding the cosmos. “Hubble is actually at its peak scientific performance now,” Wiseman said. That’s thanks to a team of NASA technical experts on the ground who monitor and quickly address any technical challenges that arise, she added.

“The number of proposals from scientists around the world who want to use Hubble has risen to over 1,000 per year, with only the top fraction of these selected for actual observations,” Wiseman said, adding, “Many of these complement proposed Webb observations.”

Read the original article on Business Insider

Read original article here

Webb Space Telescope Mechanics: How NASA Unlocked Astronomy’s Next Great Era

As a New Yorker, I’d say trying to spot a star from Times Square is little more than a fool’s errand. 

To catch even the faintest glimpse of one, you’d have to squint past fluorescent street lamps, flashing billboards, stock market tickers and other illuminated distractions. You’re better off taking the train a hundred or so miles upstate. Out there, stargazing no longer requires any effort. A breathtaking canopy of sparkles hangs over you, whether you like it or not. 

But even from the deepest, darkest, most remote location, you will never see every star with your naked eye. You physically can’t spot all the galaxies, nebulae, exoplanets, quasars — I could go on — in your line of vision, even with your favorite off-the-shelf optical telescope. There are billions upon billions (upon billions) more cosmic phenomena out there. It’s just our human eyes aren’t built to see the light they emanate. It’s called infrared light.

Thus, quite a lot of space treasures are invisible to us. Fortunately, however, that doesn’t mean they’re beyond us. 

As Stephen Hawking once remarked, humans are unique in that we always find a way to transcend our mortal limits. We do it “with our minds and our machines.” And, sure enough, over the years, astronomers have developed fascinating infrared workarounds — ultimately paving the way for NASA’s James Webb Space Telescope.

Fighting a human restriction

Already, big-budget space telescopes like NASA’s Hubble and Spitzer elucidate some cosmic infrared secrets. They contain instruments that sky-scan for the elusive light, then translate that information into signals comprehensible by human pupils. This, in turn, allows us to see lots of stuff in the universe that’s normally hidden to our eyes. 

Hubble’s famous deep field image seen through the lens of infrared detection. Those bright spots aren’t stars. Each one is an entire galaxy.

NASA, ESA, and R. Thompson (Univ. Arizona)

However, if those massive telescopes are episode one and two of astronomy’s infrared detection series, the agency’s powerful new Webb Space Telescope — of which the first set of full-fledged images was released on July 12 — is an entirely new season.

Levels beyond the Hubble and Spitzer’s infrared capabilities, the JWST is literally built for the job. 


Enlarge Image

This image composite compares infrared and visible views of the famous Orion nebula and its surrounding cloud. The infrared picture is from NASA’s Spitzer Space Telescope, and the visible image is from the National Optical Astronomy Observatory, headquartered in Tucson, Arizona.

NASA et al.

The trailblazing telescope is a gold-plated, $10 billion machine stuffed with infrared detectors, accented with high-tech lenses and programmed with ultrapowerful software. Its holy grail device is called the Near Infrared Camera, or Nircam, and will lead the charge by collecting a wealth of deep space infrared signals for astronomers to view on the ground. 

This is why the JWST is often said to hold the promise of unveiling an “unfiltered universe.”

Looking through the JWST lens instead of a standard optical telescope would be like looking up at the stars from my hypothetical New York dark zone instead of Times Square. There’d be a myriad more sparkles in both cases, even though you’re viewing the same sky. It’s just that in our shadowy dark zone analogy, we’re viewing extra stars because we’re uninhibited by light pollution. The JWST, on the other hand, is collecting deep space infrared light and decoding it for us.

It will point at the exact same universe that the Hubble has scrutinized for decades and scientists have studied for ages, but it will access luminescence we can’t see, possibly revealing concealed space-borne phenomena like violent black holes, exotic exoplanets, grand spiral galaxies and… maybe even signals of alien life? 

Its first images have already taken much more than our breath away. In fact, NASA personnel who were the first to lay eyes on the JWST’s “first light” images said they were moved to tears. “What I have seen moved me, as a scientist, as an engineer and as a human being,” Pam Melroy, NASA’s deputy administrator, said. 

These NASA Hubble Space Telescope images compare two diverse views of the roiling heart of a vast stellar nursery, known as the Lagoon Nebula. On the left, is a standard optical version. On the right, infrared.

NASA, ESA, and STScI

But before we get into the specifics of the JWST’s infrared mechanics, we have to talk about the electromagnetic spectrum. More specifically, a bit of a conundrum that it poses for us humans. 

Why can’t we see infrared light?

At some point in your life, you might’ve wondered what it’d be like to see a new color. One that can’t be described, the way “green” doesn’t really have a definition beyond “the hue of a caterpillar,” — or, if you’re an objectivity fan, “a wavelength of 550 nanometers.” After some thought, I’d bet you settled into the disturbing reality that you’ll never know the answer. 

It’s because colors are nothing more than the products of light reflecting off some source. 

Different colors are dictated by different wavelengths of light, which you can imagine as curvy zigzags of various proportions. When we see a blue umbrella, for instance, our eyes pick up on tighter, blue wavelengths emanating from the waterproof material. While admiring a fiery sunset, our eyes take in a bunch of longer, more relaxed red and yellow wavelengths. 

All these wavelengths are neatly organized on what’s known as “the electromagnetic spectrum.” But here’s the issue. 

This infographic illustrates the spectrum of electromagnetic energy, specifically highlighting the portions detected by NASA’s Hubble, Spitzer, and Webb space telescopes.

NASA and J. Olmsted [STScI]

Though there’s an infinite amount of light wavelengths, humans can only “see” one tiny part of the spectrum: The visible light region, which encapsulates the colors of the rainbow. That’s precisely why we’ll never experience the pleasure of viewing a non-rainbow color. 

Our bodies won’t let it happen, and there’s nothing we can do to change that — except build a superpower telescope, of course.

Spying on secret wavelengths

Because infrared light falls beyond the visible light region, despite its name, it doesn’t look red. It doesn’t look like anything. It’s actually better described as a heat signature — we can “feel” infrared wavelengths, which is why a lot of thermal imaging equipment includes infrared detectors. Firefighters, for example, call on infrared to learn where a fire may be burning in a building without having to go inside. 

But specifically to astronomy, the non-visibility of infrared wavelengths is a major problem.

The universe is expanding. Constantly. Which means that, as you read this, stars, galaxies and quasars — super luminescent objects that act like cosmic flashlights — are traveling farther and farther from Earth. And as they do that, the wavelengths of light they give off gradually stretch out from our perspective, sort of like a rubber band being pulled. They extend, recline and stretch until they shift to the red end of the spectrum. They “redshift.” 

Our Milky Way’s center is normally hidden from standard, optical telescopes due to clouds of dust and gas. But the Spitzer Space Telescope’s infrared cameras were able to penetrate much of the dust, revealing stars of the crowded galactic center. The upcoming James Webb Space Telescope can offer a view even more spectacular than this — teasing out fainter stars and sharper details.

NASA, JPL-Caltech, Susan Stolovy (SSC/Caltech) et al.

Take a star that was born near the beginning of time, for instance. At some point, once Earth came into existence, this star might have radiated blue light wavelengths toward our young planet. But as it got farther away, in tandem with the universe’s expansion, those blue light wavelengths started to stretch from Earth’s vantage point, getting redder… and redder… and redder. 

“Redshifting is the stretching of light toward longer wavelengths that occurs as light travels through the expanding universe, and can be used to gauge distance,” Paul Geithner, deputy project manager for the JWST, said in a statement. 

In fact, he said the JWST’s Nircam, “will take a series of pictures using filters that pick up different wavelengths, and use the changes in brightness it detects between these images to estimate the redshifts of the distant galaxies.” 

Eventually, however, these wavelengths stretch even beyond the visible light spectrum. They tread into infrared waters — and they disappear from the view of our naked eye. Consider that ancient star example again. 

Now, billions of years later, those slowly reddening wavelengths have moved all the way into the infrared region of the spectrum, from our perspective. The ancient star is only sending us the kind of starlight our eyes can’t see.

You can see an image from all of Webb’s major instruments in this collage. These aren’t the telescope’s final, full-color “first light” results. They’re just testing products.

NASA/STScI

Stars and galaxies, MIA

What this means is that all the distant, super rare and probably information-rich stars and galaxies are invisible to us, along with everything illuminated by those stars and galaxies. We’re missing the pieces of our universe’s history — its beginning chapters. 

But thanks to its infrared-hunting instruments, the JWST’s infrared detectors could show us those missing pieces. They could elucidate what the cosmos looked like during its first moments after the Big Bang. They could also find distant exoplanets floating among their own exomoons and search for far away artificial light that may signal extraterrestrial life. They will offer us a landscape of the universe that’s clear enough to remind us of our microscopic place in it. 

A comparison of Hubble’s visible and infrared views of the Monkey Head Nebula. While the Hubble has some infrared capabilities, it’s nothing compared to the Webb.

NASA and ESA

Plus, to take everything a step further, infrared wavelengths have the added benefit of being long enough to travel through matter, including thick, enormous stardust clouds. Thus, if the JWST picks up on infrared light radiating from such a cloud, it’d be able to paint a picture of the scene within — perhaps, even, a scene of ancient stars being born.

“It is not clear how the universe transformed from a simpler state of nothing but hydrogen and helium to the universe we see today,” Geithner said. “[T]he Webb telescope will see distant reaches of space and an epoch of time never observed before and help us answer these important questions.”

But the most coveted aspect of the JWST is that, in addition to questions scientists have been asking for decades, it could very well answer a few no one thought to ask.

Hubble and James Webb Space Telescope Images Compared: See the Difference

See all photos

Read original article here

Is “Slow Science” the Answer to Astronomy’s Carbon Footprint? – Sky & Telescope

A nighttime photograph taken from the International Space Station
ESA / NASA

An international team of astronomers has determined how much astronomical facilities — namely, the telescopes on the ground and in space that astronomers use to study the sky — contribute to climate change. Reporting in Nature Astronomy, the team estimates that this footprint outweighs all other research-related activities, a finding that has big implications for the future of the field.

The researchers felt spurred to conduct the study by current events: “Humankind is facing a climate emergency,” says team member Annie Hughes (Max Planck Institute for Astronomy, Germany). “The scientific evidence is unequivocal that human activity is responsible for modifying the climate. The scientific evidence is equally clear that we must change our activities in the next decade.”

Astronomers, like everybody else, have a carbon footprint. This oft-used term can have subtly different definitions; in this case, Jürgen Knödlseder (University of Toulouse, France) and colleagues define it as the total greenhouse gas emissions of a facility over its life cycle. Emissions consist mostly of carbon dioxide and methane but include a number of other heat-trapping gases as well.

A general lack of data makes it difficult to determine how much astronomers contribute to greenhouse gas emissions. Previous studies have focused on research-related activities such as flying to conferences and using supercomputers. But the biggest source of astronomy’s carbon footprint, the new study finds, is the construction and operation of increasingly larger telescopes.

Because precise data is lacking, often due to issues of confidentiality, the team came to this conclusion using a technique called economic input-output analysis. It basically determines carbon emissions by cost and/or weight. Knödlseder compares the process to fueling a car: Filling a tank all the way full instead of halfway will double its weight. Doubling the fuel will both cost twice as much and produce twice the emissions.

Using this input-output analysis, the team calculated that current astronomy facilities over their life cycles produce the equivalent of 20 million tons of carbon dioxide, with an annual emission of more than 1 million tons of carbon dioxide equivalent.

“To give you some perspective,” Knödlseder notes, “this is the annual carbon footprint of countries like Estonia, Croatia, or Bulgaria.” Another piece of perspective: The U.S. in 2019 contributed emissions equivalent to more than 6.5 billion tons of carbon dioxide.

It’s a Start

Cost/weight data has the benefit of being publicly available, though still sometimes difficult to find, Knödlseder says. That makes any kind of calculation possible at all. But Andrew Ross Wilson (University of Strathclyde, UK), who wrote an accompanying perspective piece for Nature Astronomy, says that the method is not commonly used in carbon accounting, particularly for space activities.

“It was found that using economic input-output methods . . . significantly overestimates the total environmental impacts,” Wilson says. The reasons are many: For one, the space industry, often funded by the state, is not a truly free market. Also, the custom-made materials used in space missions often cost more because of their research and development rather than their manufacturing.

“As such,” Wilson says, “the European Space Agency (and others) have created a new process database to fill these gaps more accurately and do not recommend applying economic input-output databases to space life-cycle assessments.”

Knödlseder’s team acknowledges these caveats, but they argue that providing these first-order estimates is a crucial first step. The next step is for facilities to conduct their own, more detailed analyses — and then take action. 

“I think Knödlseder’s assessment is a fairly decent first-order approximation due to the lack of data that was available to him and his team,” Wilson agrees. “It is certainly a good first step for more detailed assessments.” 

But he cautions, “I’m not convinced any space life-cycle assessment practitioner would particularly use this result to inform their own analyses. ESA certainly wouldn’t look twice at this estimation.”

Slow Science

Nevertheless, Knödlseder’s team argues even the rough numbers are basis for action: “The solutions are in our hand, we only need to be able to take them,” says team member Luigi Tibaldo (Institute of Research in Astrophysics and Planetology, France).

The first step is to switch existing facilities from fossil fuels to renewable power sources, an effort already underway in many places. Difficulties remain for telescopes in remote locations, though, since they’re not typically connected to the local power grid. The Atacama Large Millimeter/submillimeter Array in Chile, for example, is powered by diesel-fueled generators. Other facilities may be easier to fold into ongoing systematic changes.  

But those actions won’t be enough, the team argues. Astronomers must also slow the pace at which we build new facilities. Benefits extend beyond reducing emissions, as “slow science” would give us more time to fully make use of the data we already have. Certainly, research for entire PhD theses have been conducted using solely archived observations.

The European Southern Observatory is building the Extremely Large Telescope at Cerro Armazones in Chile, one of several large astronomy projects underway. The telescope will be 39 meters across.
ESO / L. Calçada

Jennifer Wiseman, senior project scientist of the Hubble Space Telescope, agrees on the value of archival data. “We’ve made the archive of Hubble data so robust that at least as many scientific papers are published these days based on archival data as from new observations,” she says. “This means good, multiple uses of data that will be available for many years to come.”

But many astronomers take issue with slowing down. Indeed, some members faced resistance from colleagues even before publishing the paper.

“There’s nothing that says astronomy can’t or won’t switch to renewable energy sources along with the rest of the economy,” says John Mather (NASA Goddard Space Flight Center), the project scientist of the James Webb Space Telescope. “The carbon footprints being calculated are not constants of nature, they’re just estimates of a piece of a system governed by feedback loops.”

Mather also raises a counterargument to slowing the pace of science: “Some kinds of astronomy are already becoming difficult or impossible due to light pollution, radio interference, and satellite constellations,” he says. “It can be argued that we should increase our efforts to learn everything we can, as soon as possible, before we can’t.”

Still, the team remains stalwart in their position: “Fighting climate change is a collective challenge, and everyone, every activity sector and every country, has to contribute to meet that challenge,” Knödlseder says. “In fighting climate change, there are no priority solutions; we have to activate all possible lever arms to bring our emissions down. Of course, some measures will be more efficient than others, but we need them all to succeed.”


Advertisement

var aepc_pixel = {"pixel_id":"357563535071425","user":[],"enable_advanced_events":"yes","fire_delay":"0"}, aepc_pixel_args = [], aepc_extend_args = function( args ) { if ( typeof args === 'undefined' ) { args = {}; }

for(var key in aepc_pixel_args) args[key] = aepc_pixel_args[key];

return args; };

// Extend args if ( 'yes' === aepc_pixel.enable_advanced_events ) { aepc_pixel_args.userAgent = navigator.userAgent; aepc_pixel_args.language = navigator.language;

if ( document.referrer.indexOf( document.domain ) < 0 ) { aepc_pixel_args.referrer = document.referrer; } } fbq('init', aepc_pixel.pixel_id, aepc_pixel.user); setTimeout( function() { fbq('track', "PageView", aepc_pixel_args); }, aepc_pixel.fire_delay * 1000 );

Read original article here