Category Archives: Science

How can astronauts explore Mars’ Grand Canyon, Valles Marineris

There are many in Mars exploration circles that see Valles Marineris as a “tell all” place, ripe for human exploration that can uncover the planet’s history and its capacity to sustain microbial life. 

That said, how best to investigate the multifaceted geology in evidence at this site? Can future crews on the Red Planet dive safely into this huge canyon system? And what awaits those probing a vast region that’s been branded as the Grand Canyon of Mars?

Valles Marineris is a humongous feature; a system of canyons cutting across the Martian surface spanning 2,500 miles (4,000 kilometers), covering about one-fifth the circumference of Mars. At some points, this colossal chasm is 125 miles (200 km) wide. In certain places, the canyon floor reaches a depth of 5 miles (8 km). 

Bottom line: that’s far deeper than Earth’s Grand Canyon.

Related: Glaciers on Mars likely helped carve Red Planet’s ‘Grand Canyon’

To encourage on-the-spot human studies of Valles Marineris, some scientists have pinpointed and provisionally named an area known as the “Noctic Landing” site. Its strategic location allows the shortest possible surface excursions to the Martian volcanic plateau of Tharsis as well as Valles Marineris — that grand feature and region on the Red Planet that exposes the longest record of Mars’ geology and evolution through time.

Tharsis is the area of Mars that has experienced the longest and most extensive volcanic history, and might still be volcanically active. Some of the youngest lava flows on Mars have been identified on the western flanks of the Tharsis Bulge. 

Furthermore, those flows are within driving range of future pressurized rover traverses.

Top priority science

“I think that, when it comes to planning human missions to Mars, we might be past the point of thinking only about notional science objectives in location-agnostic ways,” said Pascal Lee, a planetary scientist at NASA Ames Research Center in California and the SETI Institute. 

Lee is chairman of the Mars Institute, an international, non-governmental, non-profit research organization dedicated to advancing the scientific study, exploration, and public understanding of Mars. He’s also director of the NASA Haughton-Mars Project, an international multidisciplinary field research project focused on Mars analog studies at the Haughton impact crater site on Devon Island in the High Arctic.

We can and should, right now, look for human landing sites where most if not all our top priority science objectives could be met, Lee told Space.com. That human touchdown zone would likely offer multiple ways of extracting water locally — something a robotic scouting mission could ascertain — and where it would make sense to establish a base for long term exploration, he said.

Noctis Landing on Mars is an ostensibly flat transitional region between Noctis Labyrinthus and Valles Marineris proper.  (Image credit: Pascal Lee)

At the crossroads

Lee is passionate that such a site that he dubs Noctis Landing is an ostensibly flat transitional region between Noctis Labyrinthus (Latin for ‘the labyrinth of night’) and Valles Marineris proper.

Noctis Landing not only offers a large number and wide range of regions of interest for short-term exploration, it is also located strategically at the crossroads between Tharsis and Valles Marineris, which are key for long-term exploration. The area is distinguished for its maze-like system of deep, steep-walled valleys.

“If you head east or south from Noctis Landing, you go deeper into Valles Marineris and can look for signs of past life,” Lee said. “If you head west or north from Noctis, you climb onto Mars’ giant volcanoes with their many caves, and can look for extant life.”

No rock-climbing required

The upshot is that the Noctis Landing locale is unique, being at the literal junction of the search for signs of past and present life on Mars.

As for exploring Valles Marineris, the key advantage of Noctis Landing is that you can access all the rock layers of the canyon without having to resort to rock-climbing, Lee said.

“Thanks to the giant Oudemans impact crater nearby the Noctis Landing, giant slabs of Valles Marineris canyon walls have been laid flat there, ready for you to explore, one rock layer at a time, by just driving along the canyon floor,” Lee added.

Once down at Noctis Landing, astronaut explorers have a number of routes to investigate Mars. (Image credit: Pascal Lee, et al.)

Hidden water

Late last year, Igor Mitrofanov of the Space Research Institute of the Russian Academy of Sciences in Moscow, Russia reported that a significant quantity of hidden water has been spotted at the central part of Mars’ dramatic canyon system, Valles Marineris.

The observation came via the European Space Agency-Roscosmos ExoMars Trace Gas Orbiter (TGO). Mitrofanov is the principal investigator of the TGO-toted Fine Resolution Epithermal Neutron Detector (FREND) neutron telescope. That instrument is mapping the hydrogen — a measure of water content — in the uppermost meter of Mars’ soil.

Mitrofanov and colleagues found evidence for unusually high hydrogen abundances in the heart of Valles Marineris on Mars.

Unclear mix of conditions

“With TGO we can look down to one meter below this dusty layer and see what’s really going on below Mars’ surface — and, crucially, locate water-rich ‘oases’ that couldn’t be detected with previous instruments,” Mitrofanov stated (opens in new tab) in an ESA-issued statement.

“Assuming the hydrogen we see is bound into water molecules, as much as 40% of the near-surface material in this region appears to be water,” Mitrofanov said. 

As the ESA statement puts it, the detection suggests that “some special, as-yet-unclear mix of conditions must be present in Valles Marineris to preserve the water — or that it is somehow being replenished.”

Mitrofanov and his research associates published their work (opens in new tab) in the March 2022 issue of the journal Icarus, stating: “Such ice not only is an intriguing material for searching frozen proto-life fragments or complex organic molecules from the early epoch of Mars, but also is an indispensable natural resource for future Mars exploration that is easy to exploit.”

Fog banks

NASA’s Lee underscored the intriguing finding that there’s frequent occurrence of fog in Valles Marineris. “While the average Martian atmosphere is generally considered to hold too little water vapor for it to be worth compressing and exploiting, the presence of ice fog, the most likely explanation for the fog banks frequently filling Valles Marineris, indicates that the Martian atmosphere could be locally supersaturated in water, possibly up to amounts worth extracting,” he said.

The presence of fog in Valles Marineris, Lee said, also suggests that at least part of the hydrogen detected by Mitrofanov and his associates is likely to be in the form of H2O, not just water of hydration in minerals.

The European Space Agency’s Mars Express caught this image of fog at Valles Marineris. (Image credit: ESA/DLR/FU Berlin (G. Neukum))

Taking to the air

Purging Valles Marineris of its scientific holdings could be augmented by aerial vehicles, said Abigail Fraeman, a research scientist and Mars Science Laboratory Deputy project scientist at NASA’s Jet Propulsion Laboratory.

That view is clearly backed by the airborne success of NASA’s Ingenuity Mars helicopter at Jezero Crater.

“We can start to imagine all sorts of possibilities for future Mars exploration with aerial assets,” Fraeman told Space.com. “One of the benefits of exploring Mars from the air is the ability to travel much longer distances over terrains that would be too treacherous for rovers.”

Astronauts working on the surface of Mars could employ a helicopter (airborne at left) similar to the Ingenuity Mars Helicopter.  (Image credit: NASA)

Fraeman said that Valles Marineris is one example of a site that might really benefit from exploration by helicopters. “This platform could enable us to explore sections of really ancient crust exposed in the walls of the canyon, the steep layered sedimentary deposits in the canyon’s center, and even the mysterious recurring slope lineae which occur on steep slopes throughout Valles Marineris and might be formed by very salty liquid water.” 

Exploring these features, Fraeman added, “would help us answer questions about the entirety of Mars’ history, from the first formation through the present day, and provide unprecedented insight into mechanisms that affect the climate and habitability of Mars, as well as rocky worlds beyond our solar system.”

Follow us on Twitter @Spacedotcom (opens in new tab) or on Facebook (opens in new tab).   



Read original article here

JWST’s stunning ‘Phantom Galaxy’ picture looks like a wormhole

A fresh image based on brand-new deep-space data appears to show a wormhole spinning before our very eyes.

The appropriately named “Phantom Galaxy” glows eerily in a new image by Judy Schmidt based on James Webb Space Telescope data collected nearly a million miles away from our planet using the observatory’s mid-infrared instrument (MIRI).

“I’ve been doing this for 10 years now, and [Webb] data is new, different, and exciting,” Schmidt told Space.com. “Of course I’m going to make something with it.”

Live updates: NASA’s James Webb Space Telescope mission
Gallery: James Webb Space Telescope’s 1st photos

The image highlights the dust lanes in the galaxy, which is more properly known as NGC 628 or Messier 74. Dubbed the “perfect spiral” by some astronomers because the galaxy is so symmetrical, the Phantom Galaxy is scientifically interesting because of the intermediate-mass black hole scientists believe is embedded at its heart.

The galaxy has been imaged professionally many times before, including by space observatories such as the Hubble Space Telescope and the Wide-field Infrared Survey Explorer (WISE). What makes Webb imagery stand apart from these past efforts is the mid-infrared range that highlights cosmic dust, along with the power of its unique 18-segment hexagonal mirror and deep-space location.

Webb observed M74 earlier this week. The data was also shared on Twitter (opens in new tab) (with different filtration) by Gabriel Brammer, an astronomer at the Cosmic Dawn Center in the Niels Bohr Institute at the University of Denmark. 

A selected of raw Webb imagery is made publicly available at this portal (opens in new tab) a few hours or days after observations, and amateur imagers and scientists are free to use the data as long as they credit the source when publishing.

The Phantom Galaxy, also known as Messier 74 or NGC 628, as seen by the Hubble Space Telescope. (Image credit: NASA, ESA, and the Hubble Heritage (STScI/AURA)-ESA/Hubble Collaboration)

The busy deep-space telescope released its first operational images on July 12 of deep-space objects, including a nebula and a view of very young galaxies. An infrared view of Jupiter, along with the gas giant’s moons and rings, joined the iconic new images on July 14. 

That week’s work alone showcases Webb’s flexibility in switching between faraway objects near the cosmic dawn — when stars began shining — and solar system objects much closer to its viewfinder.

As for the Phantom Galaxy, Schmidt used Photoshop and FITS Liberator for most of the work and said many of the concepts in her 2017 YouTube imaging tutorial (opens in new tab) will help with the more advanced software of today.

You can check out more spectacular imagery of Webb photos and other cosmic objects at Schmidt’s Flickr page (opens in new tab).

Follow Elizabeth Howell on Twitter @howellspace (opens in new tab). Follow us on Twitter @Spacedotcom (opens in new tab) and on Facebook (opens in new tab)



Read original article here

Scientists Analyzed Penguin DNA And Found Something Quite Remarkable

Penguins are no strangers to climate change. Their life history has been shaped by rising and falling temperatures, and their bodies are highly specialized for some of Earth’s most extreme conditions.

 

And yet, scientists are concerned the evolutionary path of the penguin may be grinding to a halt, thanks to what appears to be the lowest evolutionary rates ever detected in birds.

A team of international researchers has just published one of the most comprehensive studies of penguin evolution to date, which is the first to integrate data from living and fossil penguin species.

The research unveils the tumultuous life history of penguins in general, with three-quarters of all known penguin species – now represented by fossils only – already extinct.

“Over 60 million years, these iconic birds have evolved to become highly specialized marine predators, and are now well adapted to some of the most extreme environments on Earth,” the authors write.

“Yet, as their evolutionary history reveals, they now stand as sentinels highlighting the vulnerability of cold-adapted fauna in a rapidly warming world.”

On land, penguins can appear a bit ridiculous, with their awkward waddle and seemingly useless wings. But underwater, their bodies are transformed into hydrodynamic torpedoes that would make any fleeing fish wish it could fly.

 

Penguins had already lost their ability to fly 60 million years ago, before the formation of the polar ice sheets, in favor of wing-propelled diving.

The fossils and genomic data suggest the unique features that enable penguins’ aquatic lifestyles emerged early in their existence as a group, with rates of evolutionary change generally trending downwards over time.

The scientists think penguins originated on a Gondwanan micro-continent called Zealandia, which is now mostly submerged under the ocean.

The paper suggests the ancestors of modern penguins – crown penguins – emerged approximately 14 million years ago, a whole 10 million years after genetic analyses have hinted at.

This particular period would coincide with a moment of global cooling named the middle Miocene climate transition. Living penguins, however, split into separate genetic groups within the last 3 million years.

Penguins spread out across Zealandia before dispersing to South America and Antarctica multiple times, with later groups likely hitching a ride on the Antarctic Circumpolar Current.

The scientists found that almost every penguin species experienced a period of physical isolation during the Last Glacial Period.

 

Their contact with other penguins was limited during this time, as groups were forced to live in more fragmented areas of habitat further north, where they could still find food and shelter.

As a result, the DNA pool of each group became narrower, pushing species further apart genetically.

In the period of warming that followed, they moved back towards the poles, and some groups, now much more genetically distinct, crossed paths once more.

The way certain groups of penguins experienced these significant climate events offers insight into how they might cope with human-caused climate change.

The groups that increased in number when warming occurred shared some features: They were migratory, and foraged offshore. The researchers think these features allowed them to respond to changing climates better, especially the ability to look further afar for prey and to move to lower latitudes.

Those that decreased in number, on the other hand, lived in one particular place, and foraged closer to shore for food: a lifestyle that doesn’t cope too well when the conditions ‘at home’ drastically change.

 

But penguins’ ability to change might be limited by more than just lifestyle – it seems to be embedded in their genes.

It turns out that penguins have the lowest evolutionary rates yet detected in bird species, along with their sister order, Procellariiformes, which includes birds like petrels and albatrosses.

The researchers compared 17 different orders of birds overall, using several genetic signatures closely related to rates of evolutionary change.

They noticed that aquatic birds generally had slower rates of evolution than their terrestrial kin, so they think the adoption of an aquatic lifestyle might go hand-in-hand with low evolutionary rates. They also think that evolutionary rates in birds are lower in cooler climates.

The order Pelecaniformes, which includes seafaring birds like pelicans and cormorants, were a near third for lowest evolutionary rate, and waterfowl (order Anseriformes) had much lower rates than earthbound fowls like turkeys, chickens, and quails (order Galliformes).

The researchers note that the ancestral crown penguins evolved at a faster rate than living penguins, but even then, this was slow compared to other birds.

Half of all living penguin species are endangered or vulnerable, and the scientists say their slow evolutionary rates and niche lifestyles could send penguins towards a dead end.

“The current pace of warming combined with limited refugia in the Southern Ocean will likely far exceed the adaptive capability of penguins,” they write.

“The risks of future collapses are ever-present as penguin populations across the Southern Hemisphere are faced with rapid anthropogenic climate change.”

This research was published in Nature Communications.

 

Read original article here

Ancient Microbial “Dark Matter” – Thousands of Unknown Bacterial Species Discovered in Hawaiian Lava Caves

Steve Smith in a Hawaiian cave passage filled with roots of the Kaʻu district on the Island of Hawai`i. Credit: Kenneth Ingham

Centuries-Old Lava Caves of Hawaiʻi Island Contain Thousands of Unknown Bacterial Species

Higher bacterial diversity than scientists expected has been uncovered in the lava caves, lava tubes, and geothermal vents on the big island of Hawaiʻi. The findings have been reported in a new study published today (July 21, 2022) in the journal Frontiers in Microbiology.

This research investigates the variety and interactions within these microbial ecosystems, which illustrate how life may have existed on

“This study points to the possibility that more ancient lineages of bacteria, like the phylum Chloroflexi, may have important ecological ‘jobs,’ or roles,” said first author Dr. Rebecca D Prescott of

Thick microbial mats hang under a rock ledge in steam vents that run along the Eastern Rift Zone on Hawaiʻi Island. Credit: Jimmy Saw

The harshest conditions—the geothermal sites—were expected to have lower diversity than the more established and habitable lava tubes. While the diversity was indeed found to be lower, the team of researchers was surprised to discover that the interactions within these communities were more complex than in locations with higher diversity.

“This leads to the question, do extreme environments help create more interactive microbial communities, with microorganisms more dependent on each other?” said Prescott. “And if so, what is it about extreme environments that helps to create this?”

Since Chloroflexi, and another class called Acidobacteria, were present at nearly all of the locations, they may play essential roles in these communities. However, these were not the most abundant bacteria, and the individual communities from the different sites showed large variations in the diversity and complexity of the microbial interactions. Counterintuitively, the most abundant groups, Oxyphotobacteria and Actinobacteria, were not often ‘hub’ species, suggesting that their roles may be less important to the overall structure of the community.

More questions than answers

Since the current study was based on the partial sequencing of one gene, it cannot accurately determine the species of microbes or their ‘jobs’ in the community. Therefore, further research is needed to help reveal the individual species that are present, as well as to better understand these bacteria’s roles in the environment.

A stalactite formation in a Hawaiian cave system from this study with copper minerals and white microbial colonies. Despite the fact that copper is toxic to many organisms, this formation hosts a microbial community. Credit: Kenneth Ingham

“Overall, this study helps to illustrate how important it is to study microbes in co-culture, rather than growing them alone (as isolates),” said Prescott. “In the natural world, microbes do not grow in isolation. Instead, they grow, live, and interact with many other microorganisms in a sea of chemical signals from those other microbes. This then can alter their gene expression, affecting what their jobs are in the community.”

Beyond the insights about past, or even future, life on Mars, bacteria from volcanic environments can also be useful in understanding how microbes turn volcanic rock (basalt) into soils, as well as bioremediation, biotechnology, and sustainable resource management.

Reference: “Islands Within Islands: Bacterial Phylogenetic Structure and Consortia in Hawaiian Lava Caves and Fumaroles” by Rebecca D. Prescott, Tatyana Zamkovaya, Stuart P. Donachie, Diana E. Northup, Joseph J. Medley, Natalia Monsalve, Jimmy H. Saw, Alan W. Decho, Patrick S. G. Chain and Penelope J. Boston, 21 July 2022, Frontiers in Microbiology.
DOI: 10.3389/fmicb.2022.934708

Funding: NASA Headquarters, George Washington University



Read original article here